論文の概要: Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks
- arxiv url: http://arxiv.org/abs/2310.09412v1
- Date: Fri, 13 Oct 2023 21:26:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 20:31:43.720264
- Title: Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks
- Title(参考訳): 実世界の配水ネットワークにおけるポンプ持続性最適化のためのハイブリッド強化学習
- Authors: Harsh Patel, Yuan Zhou, Alexander P Lamb, Shu Wang, Jieliang Luo
- Abstract要約: 本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
- 参考スコア(独自算出の注目度): 55.591662978280894
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This article addresses the pump-scheduling optimization problem to enhance
real-time control of real-world water distribution networks (WDNs). Our primary
objectives are to adhere to physical operational constraints while reducing
energy consumption and operational costs. Traditional optimization techniques,
such as evolution-based and genetic algorithms, often fall short due to their
lack of convergence guarantees. Conversely, reinforcement learning (RL) stands
out for its adaptability to uncertainties and reduced inference time, enabling
real-time responsiveness. However, the effective implementation of RL is
contingent on building accurate simulation models for WDNs, and prior
applications have been limited by errors in simulation training data. These
errors can potentially cause the RL agent to learn misleading patterns and
actions and recommend suboptimal operational strategies. To overcome these
challenges, we present an improved "hybrid RL" methodology. This method
integrates the benefits of RL while anchoring it in historical data, which
serves as a baseline to incrementally introduce optimal control
recommendations. By leveraging operational data as a foundation for the agent's
actions, we enhance the explainability of the agent's actions, foster more
robust recommendations, and minimize error. Our findings demonstrate that the
hybrid RL agent can significantly improve sustainability, operational
efficiency, and dynamically adapt to emerging scenarios in real-world WDNs.
- Abstract(参考訳): 本稿では,実世界の配水ネットワーク(wdns)のリアルタイム制御を強化するため,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
逆に、強化学習(RL)は不確実性への適応性と推論時間を短縮し、リアルタイムの応答性を実現している。
しかし、WDNの正確なシミュレーションモデルの構築にはRLの効果的な実装が重要であり、事前の応用はシミュレーショントレーニングデータの誤りによって制限されている。
これらのエラーは、RLエージェントが誤解を招くパターンやアクションを学習し、最適でない運用戦略を推奨する可能性がある。
これらの課題を克服するために、改良された「ハイブリッドRL」手法を提案する。
この方法は、rlの利点を歴史的データに固定しながら統合し、最適な制御勧告を漸進的に導入するためのベースラインとなる。
エージェントのアクションの基盤として運用データを活用することで、エージェントのアクションの説明可能性を高め、より堅牢な推奨を促進し、エラーを最小限に抑える。
以上の結果から, ハイブリッドRLエージェントは, 持続可能性, 運用効率を著しく向上し, 現実のWDNにおいて出現するシナリオに動的に適応できることが示唆された。
関連論文リスト
- Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
オフラインデータセットのための高品質な仮想トラジェクトリを生成するために拡散モデルを導入し,PPOアルゴリズムを強化するフレームワークを提案する。
RLにおける拡散モデルの可能性、特にオフラインデータセットについて検討し、オンラインRLをオフライン環境に拡張し、拡散モデルによるPPOの性能改善を実験的に検証する。
論文 参考訳(メタデータ) (2024-09-02T19:10:32Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
本稿では,知識インフォームドモデルに基づく残留強化学習フレームワークを提案する。
交通専門家の知識を仮想環境モデルに統合し、基本力学にIntelligent Driver Model(IDM)、残留力学にニューラルネットワークを使用する。
本稿では,従来の制御手法を残差RLと組み合わせて,スクラッチから学習することなく,効率的な学習と政策最適化を容易にする新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-08-30T16:16:57Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
拡散モデルは強化学習(Reinforcement Learning, RL)において、その強力な表現力と多モード性に対して広く注目を集めている。
モデルなし拡散に基づくオンラインRLアルゴリズムQ-weighted Variational Policy Optimization (QVPO)を提案する。
具体的には、ある条件下でのオンラインRLにおける政策目標の厳密な下限を証明できるQ重み付き変動損失を導入する。
また,オンラインインタラクションにおける拡散ポリシのばらつきを低減し,サンプル効率を向上させるための効率的な行動ポリシーも開発している。
論文 参考訳(メタデータ) (2024-05-25T10:45:46Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
エネルギー貯蔵システム(ESS)の最適供給は、動的価格の変動、需要消費、再生可能エネルギーの発生による深刻な課題を提起する。
ディープニューラルネットワーク(DNN)の一般化機能を活用することで、ディープ強化学習(DRL)アルゴリズムは、分散ネットワークの性質に適応して応答する良質な制御モデルを学ぶことができる。
本稿では,オンライン操作における環境や行動空間の運用制約を厳格に実施しながら,継続的な行動空間を効果的に処理するDRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-26T17:12:04Z) - A reinforcement learning strategy for p-adaptation in high order solvers [0.0]
強化学習(Reinforcement Learning, RL)は、意思決定プロセスを自動化するための有望なアプローチである。
本稿では,高次解法を用いる場合の計算メッシュの順序を最適化するためのRL手法の適用について検討する。
論文 参考訳(メタデータ) (2023-06-14T07:01:31Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
展開効率は、強化学習(RL)の多くの実世界の応用にとって重要な基準である
本稿では,「制約付き最適化」の観点から,デプロイ効率の高いRL(DE-RL)の理論的定式化を提案する。
論文 参考訳(メタデータ) (2022-02-14T01:31:46Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
我々は、純粋なDRLベースアルゴリズムとハイブリッドDRLヒューリスティックアルゴリズムである2つのDeep Reinforcement Learningアルゴリズムを比較した。
評価結果から,提案手法は純粋なDRLよりも予測不可能なネットワーク負荷変化の場合に,より堅牢で信頼性が高いことが示唆された。
論文 参考訳(メタデータ) (2021-08-05T10:24:33Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
より原理的な方法で過大評価を防止するオフライン強化学習アルゴリズムを提案する。
提案アルゴリズムであるOptiDICEは,最適ポリシーの定常分布補正を直接推定する。
OptiDICEは最先端の手法と競合して動作することを示す。
論文 参考訳(メタデータ) (2021-06-21T00:43:30Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
適応行動優先型オフラインモデルに基づくRL(Adaptive Behavioral Priors:MABE)を導入する。
MABEは、ドメイン内の一般化をサポートする動的モデルと、ドメイン間の一般化をサポートする振る舞いの事前が相補的であることの発見に基づいている。
クロスドメインの一般化を必要とする実験では、MABEが先行手法より優れていることが判明した。
論文 参考訳(メタデータ) (2021-06-16T20:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。