MPool: Motif-Based Graph Pooling
- URL: http://arxiv.org/abs/2303.03654v1
- Date: Tue, 7 Mar 2023 05:21:15 GMT
- Title: MPool: Motif-Based Graph Pooling
- Authors: Muhammad Ifte Khairul Islam, Max Khanov, Esra Akbas
- Abstract summary: Graph Neural networks (GNNs) have recently become a powerful technique for many graph-related tasks including graph classification.
We propose a multi-channel Motif-based Graph Pooling method named (MPool)
As the first channel, we develop node selection-based graph pooling by designing a node ranking model considering the motif adjacency of nodes.
As the second channel, we develop cluster-based graph pooling by designing a spectral clustering model using motif adjacency.
As the final layer, the result of each channel is aggregated into the final graph representation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural networks (GNNs) have recently become a powerful technique for
many graph-related tasks including graph classification. Current GNN models
apply different graph pooling methods that reduce the number of nodes and edges
to learn the higher-order structure of the graph in a hierarchical way. All
these methods primarily rely on the one-hop neighborhood. However, they do not
consider the higher- order structure of the graph. In this work, we propose a
multi-channel Motif-based Graph Pooling method named (MPool) captures the
higher-order graph structure with motif and local and global graph structure
with a combination of selection and clustering-based pooling operations. As the
first channel, we develop node selection-based graph pooling by designing a
node ranking model considering the motif adjacency of nodes. As the second
channel, we develop cluster-based graph pooling by designing a spectral
clustering model using motif adjacency. As the final layer, the result of each
channel is aggregated into the final graph representation. We perform extensive
experiments on eight benchmark datasets and show that our proposed method shows
better accuracy than the baseline methods for graph classification tasks.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Careful Selection and Thoughtful Discarding: Graph Explicit Pooling
Utilizing Discarded Nodes [53.08068729187698]
We introduce a novel Graph Explicit Pooling (GrePool) method, which selects nodes by explicitly leveraging the relationships between the nodes and final representation vectors crucial for classification.
We conduct comprehensive experiments across 12 widely used datasets to validate our proposed method's effectiveness.
arXiv Detail & Related papers (2023-11-21T14:44:51Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges.
An important task in studying large datasets with graphical structure is graph clustering.
We introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering.
arXiv Detail & Related papers (2022-11-09T01:49:23Z) - Multi-Granularity Graph Pooling for Video-based Person Re-Identification [14.943835935921296]
graph neural networks (GNNs) are introduced to aggregate temporal and spatial features of video samples.
Existing graph-based models, like STGCN, perform the textitmean/textitmax pooling on node features to obtain the graph representation.
We propose the graph pooling network (GPNet) to learn the multi-granularity graph representation for the video retrieval.
arXiv Detail & Related papers (2022-09-23T13:26:05Z) - Higher-order Clustering and Pooling for Graph Neural Networks [77.47617360812023]
Graph Neural Networks achieve state-of-the-art performance on a plethora of graph classification tasks.
HoscPool is a clustering-based graph pooling operator that captures higher-order information hierarchically.
We evaluate HoscPool on graph classification tasks and its clustering component on graphs with ground-truth community structure.
arXiv Detail & Related papers (2022-09-02T09:17:10Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
We propose to use second-order pooling as graph pooling, which naturally solves the above challenges.
We show that direct use of second-order pooling with graph neural networks leads to practical problems.
We propose two novel global graph pooling methods based on second-order pooling; namely, bilinear mapping and attentional second-order pooling.
arXiv Detail & Related papers (2020-07-20T20:52:36Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.