論文の概要: Uncertainty-Aware Weakly Supervised Action Detection from Untrimmed
Videos
- arxiv url: http://arxiv.org/abs/2007.10703v1
- Date: Tue, 21 Jul 2020 10:45:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 04:56:38.384451
- Title: Uncertainty-Aware Weakly Supervised Action Detection from Untrimmed
Videos
- Title(参考訳): 不確かさを意識した映像からの行動検出
- Authors: Anurag Arnab, Chen Sun, Arsha Nagrani, Cordelia Schmid
- Abstract要約: 本稿では,ビデオフレームラベルのみを用いてトレーニングした,禁止レベルの行動認識モデルを提案する。
人1人当たりの手法は、複数のインスタンス学習フレームワーク内の大規模な画像データセットで訓練されている。
標準的な多重インスタンス学習の仮定では、各バッグには、指定されたラベルを持つ少なくとも1つのインスタンスが含まれているという仮定が無効である場合、どのようにメソッドを適用するかを示す。
- 参考スコア(独自算出の注目度): 82.02074241700728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent advances in video classification, progress in
spatio-temporal action recognition has lagged behind. A major contributing
factor has been the prohibitive cost of annotating videos frame-by-frame. In
this paper, we present a spatio-temporal action recognition model that is
trained with only video-level labels, which are significantly easier to
annotate. Our method leverages per-frame person detectors which have been
trained on large image datasets within a Multiple Instance Learning framework.
We show how we can apply our method in cases where the standard Multiple
Instance Learning assumption, that each bag contains at least one instance with
the specified label, is invalid using a novel probabilistic variant of MIL
where we estimate the uncertainty of each prediction. Furthermore, we report
the first weakly-supervised results on the AVA dataset and state-of-the-art
results among weakly-supervised methods on UCF101-24.
- Abstract(参考訳): 近年の映像分類の進歩にもかかわらず、時空間行動認識の進歩は遅れている。
主な要因は、フレームごとにビデオに注釈を付けることの禁止コストである。
本稿では,映像レベルラベルのみを用いて訓練された時空間的行動認識モデルを提案する。
提案手法は,複数インスタンス学習フレームワーク内で大規模な画像データセットをトレーニングしたフレーム単位の人物検出装置を活用する。
我々は,各バッグが特定のラベルを持つインスタンスを少なくとも1つ含むという標準的な多重インスタンス学習仮定が,予測の不確かさを推定するMILの新しい確率的変種を用いて無効である場合に,我々の方法を適用する方法を示す。
さらに、UCF101-24における弱教師付き手法のうち、AVAデータセットに関する最初の弱教師付き結果と最先端結果について報告する。
関連論文リスト
- A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection [14.089888316857426]
本稿では,弱教師付きビデオ異常検出に焦点をあてる。
我々は,軽量なビデオ異常検出モデルを開発した。
我々のモデルは、最先端の手法と比較して、AUCのスコアに匹敵するか、さらに優れていることを示す。
論文 参考訳(メタデータ) (2023-10-09T01:23:08Z) - SSVOD: Semi-Supervised Video Object Detection with Sparse Annotations [12.139451002212063]
SSVODはビデオのモーションダイナミクスを利用して、スパースアノテーション付き大規模未ラベルフレームを利用する。
提案手法は,ImageNet-VID, Epic-KITCHENS, YouTube-VISの既存手法に比べて,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2023-09-04T06:41:33Z) - Weakly Supervised Two-Stage Training Scheme for Deep Video Fight
Detection Model [0.0]
ビデオにおけるファイト検出は、今日の監視システムとストリーミングメディアの普及にともなう、新たなディープラーニングアプリケーションである。
これまでの研究は、この問題に対処するための行動認識技術に大きく依存していた。
本研究では,動作認識特徴抽出器と異常スコア生成器の合成として,戦闘検出モデルを設計する。
論文 参考訳(メタデータ) (2022-09-23T08:29:16Z) - A Closer Look at Few-Shot Video Classification: A New Baseline and
Benchmark [33.86872697028233]
本研究は,3つのコントリビューションを生かした映像分類の詳細な研究である。
まず,既存のメートル法を一貫した比較研究を行い,表現学習の限界を明らかにする。
第2に,新しいアクションクラスとImageNetオブジェクトクラスとの間には高い相関関係があることが判明した。
第3に,事前学習をせずに将来的な数ショットビデオ分類を容易にするため,より多くのベースデータを持つ新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-10-24T06:01:46Z) - Reliable Shot Identification for Complex Event Detection via
Visual-Semantic Embedding [72.9370352430965]
本稿では,映像中の事象検出のための視覚的意味的誘導損失法を提案する。
カリキュラム学習に動機付け,高い信頼性の事例で分類器の訓練を開始するために,負の弾性正規化項を導入する。
提案する非ネット正規化問題の解法として,代替最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-12T11:46:56Z) - MIST: Multiple Instance Self-Training Framework for Video Anomaly
Detection [76.80153360498797]
タスク固有の識別表現を効率的に洗練するためのマルチインスタンス自己学習フレームワーク(MIST)を開発した。
mistは1)スパース連続サンプリング戦略を適用し,より信頼性の高いクリップレベル擬似ラベルを生成するマルチインスタンス擬似ラベル生成器,2)自己誘導型注意強調特徴エンコーダで構成される。
本手法は,上海技術におけるフレームレベルのAUC 94.83%の取得において,既存の教師付きおよび弱教師付き手法と同等あるいはそれ以上に機能する。
論文 参考訳(メタデータ) (2021-04-04T15:47:14Z) - Learning to Track Instances without Video Annotations [85.9865889886669]
本稿では,ラベル付き画像データセットとラベルなしビデオシーケンスのみを用いたインスタンス追跡ネットワークを学習する,新しい半教師付きフレームワークを提案する。
画像のみを訓練しても,学習した特徴表現は出現の変動にロバストであることが判明した。
さらに、このモジュールを単一ステージのインスタンスセグメンテーションとポーズ推定フレームワークに統合します。
論文 参考訳(メタデータ) (2021-04-01T06:47:41Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
2つの新しい構成要素からなるプロトタイプ中心型注意学習(pal)モデル。
まず,従来のクエリ中心学習目標を補完するために,プロトタイプ中心のコントラスト学習損失を導入する。
第二に、PALは注意深いハイブリッド学習機構を統合しており、アウトレーヤの負の影響を最小限に抑えることができる。
論文 参考訳(メタデータ) (2021-01-20T11:48:12Z) - Sharp Multiple Instance Learning for DeepFake Video Detection [54.12548421282696]
我々はDeepFakeビデオに、ビデオレベルのラベルのみを提供するが、フェイクビデオのすべての顔が操作されるわけではない部分的な顔攻撃という新しい問題を導入する。
インスタンス埋め込みからバッグ予測への直接マッピングを構築する鋭いMIL(S-MIL)を提案する。
FFPMSと広く使われているDFDCデータセットの実験により、S-MILは部分的に攻撃されたDeepFakeビデオ検出において他の手法よりも優れていることが確認された。
論文 参考訳(メタデータ) (2020-08-11T08:52:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。