論文の概要: A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection
- arxiv url: http://arxiv.org/abs/2310.05330v2
- Date: Fri, 5 Jul 2024 15:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 00:52:08.589686
- Title: A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection
- Title(参考訳): 弱スーパービジョンと適応インスタンス選択を用いた軽量ビデオ異常検出モデル
- Authors: Yang Wang, Jiaogen Zhou, Jihong Guan,
- Abstract要約: 本稿では,弱教師付きビデオ異常検出に焦点をあてる。
我々は,軽量なビデオ異常検出モデルを開発した。
我々のモデルは、最先端の手法と比較して、AUCのスコアに匹敵するか、さらに優れていることを示す。
- 参考スコア(独自算出の注目度): 14.089888316857426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection is to determine whether there are any abnormal events, behaviors or objects in a given video, which enables effective and intelligent public safety management. As video anomaly labeling is both time-consuming and expensive, most existing works employ unsupervised or weakly supervised learning methods. This paper focuses on weakly supervised video anomaly detection, in which the training videos are labeled whether or not they contain any anomalies, but there is no information about which frames the anomalies are located. However, the uncertainty of weakly labeled data and the large model size prevent existing methods from wide deployment in real scenarios, especially the resource-limit situations such as edge-computing. In this paper, we develop a lightweight video anomaly detection model. On the one hand, we propose an adaptive instance selection strategy, which is based on the model's current status to select confident instances, thereby mitigating the uncertainty of weakly labeled data and subsequently promoting the model's performance. On the other hand, we design a lightweight multi-level temporal correlation attention module and an hourglass-shaped fully connected layer to construct the model, which can reduce the model parameters to only 0.56\% of the existing methods (e.g. RTFM). Our extensive experiments on two public datasets UCF-Crime and ShanghaiTech show that our model can achieve comparable or even superior AUC score compared to the state-of-the-art methods, with a significantly reduced number of model parameters.
- Abstract(参考訳): ビデオ異常検出は、あるビデオに異常な事象、行動、または物体があるかどうかを判断することであり、効果的でインテリジェントな公共安全管理を可能にする。
ビデオの異常ラベル付けは時間と費用の両方がかかるため、既存の作品の多くは教師なしあるいは弱教師なしの学習方法を採用している。
本報告では,ビデオ異常検出の弱さに着目し,トレーニングビデオに異常の有無をラベル付けするが,どのフレームに異常があるかは明らかにされていない。
しかし、弱いラベル付きデータの不確実性と大きなモデルサイズは、既存の手法が実際のシナリオ、特にエッジコンピューティングのようなリソース制限状況に広く展開することを防ぐ。
本稿では,軽量なビデオ異常検出モデルを提案する。
一方,モデルの現状に基づいた適応型インスタンス選択戦略を提案し,信頼性の高いインスタンスを選択することにより,弱いラベル付きデータの不確実性を軽減し,モデルの性能向上を図る。
一方,本モデルを構築するために,軽量なマルチレベル時間相関アテンションモジュールと時間ガラス形状の完全連結層を設計し,既存の手法(例えばRTFM)の0.56倍までモデルパラメータを削減できることを示した。
UCF-CrimeとShanghaiTechの2つの公開データセットに関する広範な実験により、我々のモデルは最先端の手法と比較してAUCスコアに匹敵するか、さらに優れている。
関連論文リスト
- VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Benchはビデオの異常や矛盾を検出するためのビデオLMMの熟練度を評価するために設計されたベンチマークである。
我々のデータセットは、既存の最先端のテキスト・ビデオ生成モデルを用いて合成された一連のビデオから構成される。
我々は、このベンチマークタスクにおいて、オープンソースとクローズドソースの両方で既存の9つのビデオLMMを評価し、ほとんどのモデルが微妙な異常を効果的に識別するのに困難に直面することを発見した。
論文 参考訳(メタデータ) (2024-06-14T17:59:01Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
弱教師付きビデオ異常検出のための動的消去ネットワーク(DE-Net)を提案する。
まず,異なる長さのセグメントから特徴を抽出できるマルチスケール時間モデリングモジュールを提案する。
そして,検出された異常の完全性を動的に評価する動的消去戦略を設計する。
論文 参考訳(メタデータ) (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Unsupervised Video Anomaly Detection with Diffusion Models Conditioned
on Compact Motion Representations [17.816344808780965]
教師なしビデオ異常検出(VAD)問題とは、ビデオ内の各フレームをラベルにアクセスすることなく正常または異常に分類することである。
提案手法は条件付き拡散モデルを用いて,事前学習したネットワークから入力データを抽出する。
提案手法は,データ駆動しきい値を用いて,異常事象の指標として高い再構成誤差を考慮している。
論文 参考訳(メタデータ) (2023-07-04T07:36:48Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - A Modular and Unified Framework for Detecting and Localizing Video
Anomalies [30.83924581439373]
MOVADと呼ばれるオンラインビデオ異常検出とローカリゼーション問題に対するモジュール化された統一アプローチを提案します。
新たなトランスファーラーニングベースのプラグアンドプレイアーキテクチャ、シーケンシャルな異常検出器、検出しきい値を選択する数学的フレームワーク、ビデオ中のリアルタイムな異常事象検出に適したパフォーマンス指標から構成される。
論文 参考訳(メタデータ) (2021-03-21T04:16:51Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
既存のほとんどのメソッドはオートエンコーダを使用して、通常のビデオの再構築を学ぶ。
本稿では2つのエンコーダが暗黙的に外観と動きの特徴をモデル化する構造である暗黙の2経路AE(ITAE)を提案する。
通常のシーンの複雑な分布については,ITAE特徴量の正規密度推定を提案する。
NFモデルは暗黙的に学習された機能を通じて正常性を学ぶことでITAEのパフォーマンスを高める。
論文 参考訳(メタデータ) (2020-10-15T05:02:02Z) - Uncertainty-Aware Weakly Supervised Action Detection from Untrimmed
Videos [82.02074241700728]
本稿では,ビデオフレームラベルのみを用いてトレーニングした,禁止レベルの行動認識モデルを提案する。
人1人当たりの手法は、複数のインスタンス学習フレームワーク内の大規模な画像データセットで訓練されている。
標準的な多重インスタンス学習の仮定では、各バッグには、指定されたラベルを持つ少なくとも1つのインスタンスが含まれているという仮定が無効である場合、どのようにメソッドを適用するかを示す。
論文 参考訳(メタデータ) (2020-07-21T10:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。