論文の概要: A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19
- arxiv url: http://arxiv.org/abs/2007.10929v2
- Date: Thu, 17 Sep 2020 08:26:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 14:24:26.509092
- Title: A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19
- Title(参考訳): リカレントニューラルネットワークと微分方程式に基づく時空間感染症モデルとCOVID-19への応用
- Authors: Zhijian Li, Yunling Zheng, Jack Xin, and Guofa Zhou
- Abstract要約: 我々は、ディファレンス微分方程式(SIR)とリカレントニューラルネットワーク(RNN)に基づく統合疾患モデルを開発する。
イタリアのCO-19データをトレーニングし,既存の時間モデル(NN,SIR,ARIMA)を1日,3日,1週間の予測で上回っていることを示す。
- 参考スコア(独自算出の注目度): 3.464871689508835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world
significantly. Modeling the trend of infection and real-time forecasting of
cases can help decision making and control of the disease spread. However,
data-driven methods such as recurrent neural networks (RNN) can perform poorly
due to limited daily samples in time. In this work, we develop an integrated
spatiotemporal model based on the epidemic differential equations (SIR) and
RNN. The former after simplification and discretization is a compact model of
temporal infection trend of a region while the latter models the effect of
nearest neighboring regions. The latter captures latent spatial information.
%that is not publicly reported. We trained and tested our model on COVID-19
data in Italy, and show that it out-performs existing temporal models (fully
connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting
especially in the regime of limited training data.
- Abstract(参考訳): コロナウイルス感染症2019(COVID-19)の流行は世界に大きな影響を与えた。
感染者の感染傾向とリアルタイム予測のモデル化は、疾患の意思決定とコントロールの拡大に役立つ。
しかし、リカレントニューラルネットワーク(RNN)のようなデータ駆動型手法は、時間的に制限された日々のサンプルのために性能が低下する可能性がある。
本研究では,拡散微分方程式(SIR)とRNNに基づく時空間統合モデルを開発する。
前者は簡易化と離散化の後に、ある領域の時間的感染傾向のコンパクトモデルであり、後者は隣り合う領域の効果をモデル化する。
後者は潜在空間情報をキャプチャする。
%は公表されていない。
イタリアの新型コロナウイルス(COVID-19)データをトレーニングし,既存の時間モデル(NN,SIR,ARIMA)を1日,3日,1週間の予測で上回っていることを示す。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - An integrated recurrent neural network and regression model with spatial
and climatic couplings for vector-borne disease dynamics [4.254099382808598]
本研究は,病原性疾患の進展に対するニューラルネットワークと非線形回帰モデルを構築した。
我々は、気候データの季節性や、昆虫(ハエなど)と相関する外部要因として、また、関心のある地域を囲む近隣地域からの感染を考慮に入れている。
統合モデルは、2013年から2018年にかけてスリランカで発生したリーシュ・マニアシスデータに基づいて、神経側頭葉の降下によって訓練され、試験された。
論文 参考訳(メタデータ) (2022-01-23T23:04:58Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
本稿では,米国内の郡レベルでの新型コロナウイルスの流行を予測するための,長期記憶アーキテクチャに基づくデータ駆動型モデルであるCOVID-LSTMを提案する。
われわれは、時間的入力として毎週の新規症例数と、Facebookのハンドエンジニアリングによる空間的特徴を用いて、疾患の時間的および空間的拡散を捉えている。
4週間の予測で、私たちのモデルは平均50のケースで、COVIDhubアンサンブルよりも正確です。
論文 参考訳(メタデータ) (2021-09-24T17:40:08Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
ポルトガルは世界最大の発生率を持つ国であり、人口10万人当たりの14日間の発生率が1000を超える。
その重要性にもかかわらず、covid-19の地理空間的進化の正確な予測は依然として課題である。
論文 参考訳(メタデータ) (2021-05-06T15:24:00Z) - Digital twins based on bidirectional LSTM and GAN for modelling COVID-19 [8.406968279478347]
新型コロナウイルスの感染が世界中に広がり、1億人以上が感染し、220万人以上が死亡した。
疫学モデルの研究は、このような病気がどのように広まるかをよりよく理解するために、緊急に必要である。
機械学習技術の最近の進歩は、計算コストの削減で複雑なダイナミクスを学習し、予測する能力を持つニューラルネットワークを生み出している。
論文 参考訳(メタデータ) (2021-02-03T11:54:24Z) - Deep learning via LSTM models for COVID-19 infection forecasting in
India [13.163271874039191]
卓越した計算モデルと数学的モデルは、感染の拡散の複雑さのために信頼性が低い。
リカレントニューラルネットワークのようなディープラーニングモデルは、時間的シーケンスをモデル化するのに適している。
感染率の面では、新型コロナウイルスのホットポットを持つ州を選択し、感染の有無やピークに達した州と比較する。
以上の結果から,他の国や地域での手法の適用を動機づける長期予測が期待されていることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T09:19:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - A Spatial-Temporal Graph Based Hybrid Infectious Disease Model with
Application to COVID-19 [3.785123406103385]
新型コロナウイルスのパンデミックが進むにつれて、信頼できる予測が政策立案に重要な役割を果たす。
RNNのようなデータ駆動機械学習モデルは、COVID-19のような時系列データに制限がある場合に悩まされる可能性がある。
グラフ構造上にSEIRとRNNを組み合わせることで,学習と予測の精度と効率を両立させるハイブリッド時間モデルを構築する。
論文 参考訳(メタデータ) (2020-10-18T19:34:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。