論文の概要: Time-Reversal Symmetric ODE Network
- arxiv url: http://arxiv.org/abs/2007.11362v3
- Date: Thu, 7 Jan 2021 01:42:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 22:21:04.551864
- Title: Time-Reversal Symmetric ODE Network
- Title(参考訳): 時間反転対称odeネットワーク
- Authors: In Huh, Eunho Yang, Sung Ju Hwang, Jinwoo Shin
- Abstract要約: 時間反転対称性は古典力学や量子力学においてしばしば保持される基本的な性質である。
本稿では,通常の微分方程式(ODE)ネットワークがこの時間反転対称性にどの程度よく適合しているかを測定する新しい損失関数を提案する。
時間反転対称性を完全に持たないシステムであっても, TRS-ODEN はベースラインよりも優れた予測性能が得られることを示す。
- 参考スコア(独自算出の注目度): 138.02741983098454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-reversal symmetry, which requires that the dynamics of a system should
not change with the reversal of time axis, is a fundamental property that
frequently holds in classical and quantum mechanics. In this paper, we propose
a novel loss function that measures how well our ordinary differential equation
(ODE) networks comply with this time-reversal symmetry; it is formally defined
by the discrepancy in the time evolutions of ODE networks between forward and
backward dynamics. Then, we design a new framework, which we name as
Time-Reversal Symmetric ODE Networks (TRS-ODENs), that can learn the dynamics
of physical systems more sample-efficiently by learning with the proposed loss
function. We evaluate TRS-ODENs on several classical dynamics, and find they
can learn the desired time evolution from observed noisy and complex
trajectories. We also show that, even for systems that do not possess the full
time-reversal symmetry, TRS-ODENs can achieve better predictive performances
over baselines.
- Abstract(参考訳): 時間反転対称性(英: Time-reversal symmetric)は、系の力学が時間軸の反転によって変化しないことを要求するもので、古典力学や量子力学においてしばしば保持される基本的な性質である。
本稿では,我々の常微分方程式(ODE)ネットワークがこの時間-逆対称性にどの程度よく適合しているかを測定する新しい損失関数を提案する。
そして,提案した損失関数を用いて学習することで,物理系の力学をより効率的に学習できる,時間反転対称性ODEネットワーク (TRS-ODEN) と呼ばれる新しいフレームワークを設計する。
いくつかの古典力学でTRS-ODENを評価し,観測された雑音や複雑な軌道から所望の時間進化を学習できることを示した。
また, TRS-ODEN は, 時間反転対称性を完全に持たないシステムであっても, ベースラインよりも優れた予測性能が得られることを示す。
関連論文リスト
- TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
連続グラフニューラルネットワークに基づく常微分方程式(GraphODE)により予測される前後の軌跡を整列するソフト制約として,単純かつ効果的な自己監督型正規化項を提案する。
時間反転対称性を効果的に課し、古典力学の下でより広い範囲の力学系にわたってより正確なモデル予測を可能にする。
様々な物理システムに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-10-10T08:52:16Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Physics-Informed Long Short-Term Memory for Forecasting and
Reconstruction of Chaos [5.8010446129208155]
カオスシステムにおける未測定変数の進化を再現し,予測するために,物理インフォームド・ロング短期記憶(PI-LSTM)ネットワークを提案する。
トレーニングは規則化項によって制約され、システムの支配方程式に反する解を罰する。
この研究は、非線形システムの状態再構成と力学の学習の新しい機会を開く。
論文 参考訳(メタデータ) (2023-02-03T18:27:59Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
本研究では,時間スケールの異なる範囲にわたる動的システムのフローマップを近似するために,ディープニューラルネットワークの時間ステップ階層を構築した。
結果のモデルは純粋にデータ駆動であり、マルチスケールのダイナミックスの特徴を活用する。
我々は,LSTM,貯水池計算,クロックワークRNNなどの最先端手法に対して,我々のアルゴリズムをベンチマークする。
論文 参考訳(メタデータ) (2020-08-22T07:16:53Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
変動微分ネットワーク(VSDN)という,フレキシブルな連続時間リカレントニューラルネットワークを提案する。
VSDNは神経微分方程式(SDE)による散発時間系列の複雑なダイナミクスを埋め込む
VSDNは最先端の継続的ディープラーニングモデルより優れており、散発時系列の予測やタスクにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-06-11T01:40:34Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
時変重みを持つニューラルODEの新しいファミリーを提案する。
我々は、速度と表現能力の両面で、従来のニューラルODEの変形よりも優れていた。
論文 参考訳(メタデータ) (2020-05-05T01:41:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。