論文の概要: Guided Deep Decoder: Unsupervised Image Pair Fusion
- arxiv url: http://arxiv.org/abs/2007.11766v1
- Date: Thu, 23 Jul 2020 03:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 13:07:31.459112
- Title: Guided Deep Decoder: Unsupervised Image Pair Fusion
- Title(参考訳): ガイド付きディープデコーダ:教師なしイメージペア融合
- Authors: Tatsumi Uezato, Danfeng Hong, Naoto Yokoya, Wei He
- Abstract要約: 提案ネットワークは,誘導画像のマルチスケール特徴を利用するエンコーダデコーダネットワークと,出力画像を生成するディープデコーダネットワークとから構成される。
提案するネットワークは,様々な画像融合問題において最先端の性能を実現することができることを示す。
- 参考スコア(独自算出の注目度): 26.999346037307888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fusion of input and guidance images that have a tradeoff in their
information (e.g., hyperspectral and RGB image fusion or pansharpening) can be
interpreted as one general problem. However, previous studies applied a
task-specific handcrafted prior and did not address the problems with a unified
approach. To address this limitation, in this study, we propose a guided deep
decoder network as a general prior. The proposed network is composed of an
encoder-decoder network that exploits multi-scale features of a guidance image
and a deep decoder network that generates an output image. The two networks are
connected by feature refinement units to embed the multi-scale features of the
guidance image into the deep decoder network. The proposed network allows the
network parameters to be optimized in an unsupervised way without training
data. Our results show that the proposed network can achieve state-of-the-art
performance in various image fusion problems.
- Abstract(参考訳): 情報(例えば、ハイパースペクトルやRGB画像融合やパンシャーピング)にトレードオフがある入力画像と誘導画像の融合は、一つの一般的な問題として解釈できる。
しかし、以前の研究では、タスク固有の手工芸を前に適用し、統一的なアプローチでは問題に対処しなかった。
そこで本研究では,この制限に対処するために,一般的なプリエントとしてディープデコーダネットワークを提案する。
提案ネットワークは,誘導画像のマルチスケール特徴を利用するエンコーダデコーダネットワークと,出力画像を生成するディープデコーダネットワークとから構成される。
2つのネットワークは機能改善ユニットによって接続され、誘導画像のマルチスケール特徴をディープデコーダネットワークに埋め込む。
提案したネットワークでは、トレーニングデータなしでネットワークパラメータを教師なしで最適化することができる。
その結果,提案ネットワークは様々な画像融合問題において最先端の性能を実現することができた。
関連論文リスト
- PottsMGNet: A Mathematical Explanation of Encoder-Decoder Based Neural
Networks [7.668812831777923]
アルゴリズムの観点から,エンコーダ・デコーダに基づくネットワークアーキテクチャについて検討する。
画像分割には2相ポッツモデルを用いる。
離散的なPottsMGNetはエンコーダ-デコーダベースネットワークと等価であることを示す。
論文 参考訳(メタデータ) (2023-07-18T07:48:48Z) - LRRNet: A Novel Representation Learning Guided Fusion Network for
Infrared and Visible Images [98.36300655482196]
我々は,融合タスクを数学的に定式化し,その最適解とそれを実装可能なネットワークアーキテクチャとの接続を確立する。
特に、融合タスクに学習可能な表現アプローチを採用し、融合ネットワークアーキテクチャの構築は学習可能なモデルを生成する最適化アルゴリズムによって導かれる。
この新しいネットワークアーキテクチャに基づいて、赤外線および可視光画像を融合するために、エンドツーエンドの軽量核融合ネットワークを構築する。
論文 参考訳(メタデータ) (2023-04-11T12:11:23Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
我々は、赤外線と可視画像の融合を実現するために、CoCoNetと呼ばれるコントラスト学習ネットワークを提案する。
本手法は,主観的評価と客観的評価の両面において,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-11-20T12:02:07Z) - Rethinking Performance Gains in Image Dehazing Networks [25.371802581339576]
我々は、コンパクトなデハージングネットワークを得るために、人気のあるU-Netに最小限の変更を加えている。
具体的には、U-Netの畳み込みブロックをゲーティング機構で残余ブロックに置き換える。
オーバーヘッドが大幅に削減されているため、gUNetは複数のイメージデハージングデータセットの最先端メソッドよりも優れている。
論文 参考訳(メタデータ) (2022-09-23T07:14:48Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - A Dual-branch Network for Infrared and Visible Image Fusion [20.15854042473049]
高密度ブロックとGANに基づく新しい手法を提案する。
ネットワーク全体の各層に入力された画像可視光画像を直接挿入します。
提案手法により得られた融合画像は,複数の評価指標に基づいて良好なスコアが得られることを示す。
論文 参考訳(メタデータ) (2021-01-24T04:18:32Z) - Image deblurring based on lightweight multi-information fusion network [6.848061582669787]
画像デブロアリングのための軽量多情報融合ネットワーク(LMFN)を提案する。
符号化段階では、画像特徴は、マルチスケール情報抽出および融合のための様々な小規模空間に還元される。
その後、デコード段階で蒸留ネットワークが使用され、ネットワークは残留学習から最も利益を得ます。
私たちのネットワークは、少ないパラメータで最新の画像破壊結果を達成し、モデルの複雑さで既存の方法を上回ることができます。
論文 参考訳(メタデータ) (2021-01-14T00:37:37Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - Beyond Single Stage Encoder-Decoder Networks: Deep Decoders for Semantic
Image Segmentation [56.44853893149365]
セマンティックセグメンテーションのための単一エンコーダ-デコーダ手法は、セマンティックセグメンテーションの品質とレイヤー数あたりの効率の観点からピークに達している。
そこで本研究では,より多くの情報コンテンツを取得するために,浅層ネットワークの集合を用いたデコーダに基づく新しいアーキテクチャを提案する。
アーキテクチャをさらに改善するために,ネットワークの注目度を高めるために,クラスの再バランスを目的とした重み関数を導入する。
論文 参考訳(メタデータ) (2020-07-19T18:44:34Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
両問題を同時に解くための単純なゲートネットワーク(GateNet)を提案する。
多レベルゲートユニットの助けを借りて、エンコーダからの貴重なコンテキスト情報をデコーダに最適に送信することができる。
さらに,提案したFold-ASPP操作(Fold-ASPP)に基づくアトラス空間ピラミッドプーリングを用いて,様々なスケールのサリアンオブジェクトを正確に位置決めする。
論文 参考訳(メタデータ) (2020-07-16T02:00:53Z) - Image fusion using symmetric skip autoencodervia an Adversarial
Regulariser [6.584748347223698]
本稿では,より現実的な融合画像を生成するために,残差対向ネットワークによって正規化された残差自己エンコーダアーキテクチャを提案する。
残余モジュールはエンコーダ、デコーダ、および敵ネットワークの主要なビルディングとして機能する。
本稿では、融合画像と元の視覚画像の教師あり学習を行う対向正規化ネットワークを提案する。
論文 参考訳(メタデータ) (2020-05-01T15:31:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。