論文の概要: Polylidar3D -- Fast Polygon Extraction from 3D Data
- arxiv url: http://arxiv.org/abs/2007.12065v1
- Date: Thu, 23 Jul 2020 15:22:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 13:06:08.863627
- Title: Polylidar3D -- Fast Polygon Extraction from 3D Data
- Title(参考訳): Polylidar3D -- 3次元データからの高速ポリゴン抽出
- Authors: Jeremy Castagno, Ella Atkins
- Abstract要約: 3Dポイントクラウド処理によってキャプチャされたフラットな表面は、ローカライゼーションやモデリングにしばしば使用される。
屋上マッピング,道路面検出,壁面検出のためのRGBDカメラにおいて,自律型マルチス・スピードセグメンテーションを実証する。
結果は常に優れた精度を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flat surfaces captured by 3D point clouds are often used for localization,
mapping, and modeling. Dense point cloud processing has high computation and
memory costs making low-dimensional representations of flat surfaces such as
polygons desirable. We present Polylidar3D, a non-convex polygon extraction
algorithm which takes as input unorganized 3D point clouds (e.g., LiDAR data),
organized point clouds (e.g., range images), or user-provided meshes.
Non-convex polygons represent flat surfaces in an environment with interior
cutouts representing obstacles or holes. The Polylidar3D front-end transforms
input data into a half-edge triangular mesh. This representation provides a
common level of input data abstraction for subsequent back-end processing. The
Polylidar3D back-end is composed of four core algorithms: mesh smoothing,
dominant plane normal estimation, planar segment extraction, and finally
polygon extraction. Polylidar3D is shown to be quite fast, making use of CPU
multi-threading and GPU acceleration when available. We demonstrate
Polylidar3D's versatility and speed with real-world datasets including aerial
LiDAR point clouds for rooftop mapping, autonomous driving LiDAR point clouds
for road surface detection, and RGBD cameras for indoor floor/wall detection.
We also evaluate Polylidar3D on a challenging planar segmentation benchmark
dataset. Results consistently show excellent speed and accuracy.
- Abstract(参考訳): 3dポイントの雲が捉えた平坦な表面は、しばしばローカライゼーション、マッピング、モデリングに使用される。
デンスポイントクラウド処理は高い計算量とメモリコストを持ち、ポリゴンのような平面の低次元表現が望ましい。
我々は,非凸ポリゴン抽出アルゴリズムであるPolylidar3Dを提案する。これは,入力されていない3次元点群(LiDARデータなど),整理された点群(レンジ画像など),あるいはユーザが提供するメッシュである。
非凸多角形は、障害物や穴を表す内部の切り欠きのある環境における平坦な表面を表す。
polylidar3dフロントエンドは、入力データを半端三角形メッシュに変換する。
この表現は、後続のバックエンド処理のための共通のレベルの入力データ抽象化を提供する。
polylidar3dバックエンドは、メッシュ平滑化、支配面正規推定、平面セグメント抽出、最後にポリゴン抽出の4つのコアアルゴリズムで構成されている。
Polylidar3Dは非常に高速で、CPUマルチスレッドとGPUアクセラレーションが利用可能である。
本研究では,屋根上マッピング用空中ライダーポイントクラウド,路面検出用自動運転ライダーポイントクラウド,室内床壁検出用rgbdカメラなどの実世界のデータセットを用いて,ポリライダー3dの汎用性と速度を実証する。
また、polylidar3d を挑戦的な平面セグメンテーションベンチマークデータセット上で評価する。
結果は一貫して優れた速度と精度を示す。
関連論文リスト
- DPPD: Deformable Polar Polygon Object Detection [3.9236649268347765]
我々は,ポリゴン形状の物体を検出するための新しい変形可能な極ポリゴン物体検出法(DPPD)を開発した。
DPPDは、自律運転のための様々な物体検出タスクで成功している。
論文 参考訳(メタデータ) (2023-04-05T06:43:41Z) - Scatter Points in Space: 3D Detection from Multi-view Monocular Images [8.71944437852952]
単眼画像からの3次元物体検出は,コンピュータビジョンの課題であり,長年の課題である。
近年の手法では, 空間に密集した正規3次元格子をサンプリングすることにより, マルチビュー特性を集約する傾向にある。
そこで本研究では,データ空間に擬似曲面点を散布し,データの分散性を維持するための学習可能なキーポイントサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-08-31T09:38:05Z) - PolyNet: Polynomial Neural Network for 3D Shape Recognition with
PolyShape Representation [51.147664305955495]
3次元形状表現とその処理は3次元形状認識に大きな影響を及ぼす。
我々は、ディープニューラルネットワークに基づく手法(PolyNet)と特定のポリゴン表現(PolyShape)を提案する。
本研究では,3次元形状分類と検索作業におけるPolyNetの長所と長所を実証した。
論文 参考訳(メタデータ) (2021-10-15T06:45:59Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection [101.20784125067559]
本稿では,3次元物体検出の問題に対処するため,Halucinated Hollow-3D R-CNNという新しいアーキテクチャを提案する。
本稿では,まず,視点ビューと鳥眼ビューに点雲を逐次投影することで,多視点特徴を抽出する。
3Dオブジェクトは、新しい階層型Voxel RoIプール操作でボックスリファインメントモジュールを介して検出される。
論文 参考訳(メタデータ) (2021-07-30T02:00:06Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
生の3次元点雲の空間的特徴を非方向性グラフモデルに符号化することで,CNNに基づくアプローチの限界を克服する代替手法を提案する。
提案手法は、訓練時間とモデル安定性を改善して、最先端の精度で達成し、さらなる研究の可能性を示す。
論文 参考訳(メタデータ) (2020-11-29T12:56:19Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - KAPLAN: A 3D Point Descriptor for Shape Completion [80.15764700137383]
KAPLANは、一連の2D畳み込みを通じて局所的な形状情報を集約する3Dポイント記述子である。
各平面において、正規点や平面間距離のような点特性は2次元グリッドに集約され、効率的な2次元畳み込みエンコーダを持つ特徴表現に抽象化される。
公開データセットの実験では、KAPLANが3D形状の完成のために最先端のパフォーマンスを達成することが示されている。
論文 参考訳(メタデータ) (2020-07-31T21:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。