論文の概要: Pixel-Pair Occlusion Relationship Map(P2ORM): Formulation, Inference &
Application
- arxiv url: http://arxiv.org/abs/2007.12088v1
- Date: Thu, 23 Jul 2020 15:52:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 12:49:44.370328
- Title: Pixel-Pair Occlusion Relationship Map(P2ORM): Formulation, Inference &
Application
- Title(参考訳): 画素対閉塞関係図(P2ORM):定式化・推論・応用
- Authors: Xuchong Qiu and Yang Xiao and Chaohui Wang and Renaud Marlet
- Abstract要約: 2次元画像における幾何学的閉塞に関する概念(意味論を無視する)を定式化する。
本稿では, 画素対閉塞関係を用いて, 閉塞境界と閉塞方向の両方を統一的に定式化することを提案する。
各種データセットの実験により,本手法が既存の手法よりも優れていることが示された。
また,最新のモノクル深度推定法の性能を一貫して向上する新しい深度マップの改良手法を提案する。
- 参考スコア(独自算出の注目度): 20.63938300312815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formalize concepts around geometric occlusion in 2D images (i.e., ignoring
semantics), and propose a novel unified formulation of both occlusion
boundaries and occlusion orientations via a pixel-pair occlusion relation. The
former provides a way to generate large-scale accurate occlusion datasets
while, based on the latter, we propose a novel method for task-independent
pixel-level occlusion relationship estimation from single images. Experiments
on a variety of datasets demonstrate that our method outperforms existing ones
on this task. To further illustrate the value of our formulation, we also
propose a new depth map refinement method that consistently improve the
performance of state-of-the-art monocular depth estimation methods. Our code
and data are available at http://imagine.enpc.fr/~qiux/P2ORM/.
- Abstract(参考訳): 我々は2次元画像における幾何学的閉塞に関する概念を定式化し(つまり意味を無視する)、画素対閉塞関係による閉塞境界と閉塞方向の統一的な定式化を提案する。
前者は大規模に正確なオクルージョンデータセットを生成する方法を提供し,後者は,タスク非依存の画素レベルのオクルージョン関係を単一画像から推定する新しい手法を提案する。
各種データセットの実験により,本手法が既存の手法よりも優れていることが示された。
さらに,提案手法の有効性を示すために,最先端の単眼深度推定法の性能を一貫して向上させる新しい深度マップ改良法を提案する。
私たちのコードとデータはhttp://imagine.enpc.fr/~qiux/P2ORM/で利用可能です。
関連論文リスト
- DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
現在のアプローチは、多数の離散的なポーズ仮説を持つ連続的なポーズ表現を近似している。
本稿では,DVMNet(Deep Voxel Matching Network)を提案する。
提案手法は,最先端の手法に比べて計算コストの低い新しいオブジェクトに対して,より正確なポーズ推定を行う。
論文 参考訳(メタデータ) (2024-03-20T15:41:32Z) - Occ$^2$Net: Robust Image Matching Based on 3D Occupancy Estimation for
Occluded Regions [14.217367037250296]
Occ$2$Netは、3D占有率を用いて閉塞関係をモデル化し、閉塞領域の一致点を推測する画像マッチング手法である。
本手法は実世界とシミュレーションデータセットの両方で評価し,いくつかの指標における最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-14T13:09:41Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
本研究では,オブジェクトとシーンの微細な高画質画像分割のための新しい手法を提案する。
形態素画像処理技術による拡張と浸食に着想を得て,画素レベルのセグメンテーション問題をスクイーズ対象境界として扱う。
提案手法は,COCO,Cityscapesのインスタンス・セグメンテーション・セグメンテーション・セグメンテーションにおいて大きく向上し,同一条件下での精度・速度ともに従来のPointRendよりも優れていた。
論文 参考訳(メタデータ) (2021-05-25T04:58:51Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
本研究では,ぼかしと深度情報をリンクするDPペアの形成について検討する。
本稿では,画像の深さを共同で推定し,復元するためのエンドツーエンドDDDNet(DPベースのDepth and De Network)を提案する。
論文 参考訳(メタデータ) (2020-12-01T06:53:57Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z) - AcED: Accurate and Edge-consistent Monocular Depth Estimation [0.0]
単一画像深度推定は難しい問題である。
完全に微分可能な順序回帰を定式化し、エンドツーエンドでネットワークを訓練する。
深度補正のための画素ごとの信頼度マップ計算も提案した。
論文 参考訳(メタデータ) (2020-06-16T15:21:00Z) - Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth
Estimation Using Displacement Fields [25.3479048674598]
単眼画像からの深度マップ予測の現在の手法は、滑らかで、局所的でない輪郭を予測しがちである。
我々は,何らかの再構成法により予測される深度マップから,閉塞境界付近の画素をよりシャープな再構成に再サンプリングできる2次元変位場を予測することを学ぶ。
本手法は, エンド・ツー・エンドのトレーニング可能な方法で, 任意の深さ推定手法の出力に適用できる。
論文 参考訳(メタデータ) (2020-02-28T14:15:07Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
本稿では,画像列とLiDARデータセットの融合による屋内レイアウト推定と再構築のためのアルゴリズムを提案する。
提案システムでは,2次元LiDAR情報とインテンシティ画像の両方を移動プラットフォームで収集する。
論文 参考訳(メタデータ) (2020-01-15T16:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。