Pixel-Pair Occlusion Relationship Map(P2ORM): Formulation, Inference &
Application
- URL: http://arxiv.org/abs/2007.12088v1
- Date: Thu, 23 Jul 2020 15:52:09 GMT
- Title: Pixel-Pair Occlusion Relationship Map(P2ORM): Formulation, Inference &
Application
- Authors: Xuchong Qiu and Yang Xiao and Chaohui Wang and Renaud Marlet
- Abstract summary: We formalize concepts around geometric occlusion in 2D images (i.e., ignoring semantics)
We propose a novel unified formulation of both occlusion boundaries and occlusion orientations via a pixel-pair occlusion relation.
Experiments on a variety of datasets demonstrate that our method outperforms existing ones on this task.
We also propose a new depth map refinement method that consistently improve the performance of state-of-the-art monocular depth estimation methods.
- Score: 20.63938300312815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formalize concepts around geometric occlusion in 2D images (i.e., ignoring
semantics), and propose a novel unified formulation of both occlusion
boundaries and occlusion orientations via a pixel-pair occlusion relation. The
former provides a way to generate large-scale accurate occlusion datasets
while, based on the latter, we propose a novel method for task-independent
pixel-level occlusion relationship estimation from single images. Experiments
on a variety of datasets demonstrate that our method outperforms existing ones
on this task. To further illustrate the value of our formulation, we also
propose a new depth map refinement method that consistently improve the
performance of state-of-the-art monocular depth estimation methods. Our code
and data are available at http://imagine.enpc.fr/~qiux/P2ORM/.
Related papers
- DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-20T15:41:32Z) - Occ$^2$Net: Robust Image Matching Based on 3D Occupancy Estimation for
Occluded Regions [14.217367037250296]
Occ$2$Net is an image matching method that models occlusion relations using 3D occupancy and infers matching points in occluded regions.
We evaluate our method on both real-world and simulated datasets and demonstrate its superior performance over state-of-the-art methods on several metrics.
arXiv Detail & Related papers (2023-08-14T13:09:41Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes.
Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary.
Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting.
arXiv Detail & Related papers (2021-05-25T04:58:51Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
We introduce the concept of semantic objectness to exploit the geometric relationship of these two tasks.
We then propose a Semantic Object and Depth Estimation Network (SOSD-Net) based on the objectness assumption.
To the best of our knowledge, SOSD-Net is the first network that exploits the geometry constraint for simultaneous monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2021-01-19T02:41:03Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
We study the formation of the DP pair which links the blur and the depth information.
We propose an end-to-end DDDNet (DP-based Depth and De Network) to jointly estimate the depth and restore the image.
arXiv Detail & Related papers (2020-12-01T06:53:57Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - AcED: Accurate and Edge-consistent Monocular Depth Estimation [0.0]
Single image depth estimation is a challenging problem.
We formulate a fully differentiable ordinal regression and train the network in end-to-end fashion.
A novel per-pixel confidence map computation for depth refinement is also proposed.
arXiv Detail & Related papers (2020-06-16T15:21:00Z) - Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth
Estimation Using Displacement Fields [25.3479048674598]
Current methods for depth map prediction from monocular images tend to predict smooth, poorly localized contours.
We learn to predict, given a depth map predicted by some reconstruction method, a 2D displacement field able to re-sample pixels around the occlusion boundaries into sharper reconstructions.
Our method can be applied to the output of any depth estimation method, in an end-to-end trainable fashion.
arXiv Detail & Related papers (2020-02-28T14:15:07Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
This paper presents an algorithm for indoor layout estimation and reconstruction through the fusion of a sequence of captured images and LiDAR data sets.
In the proposed system, a movable platform collects both intensity images and 2D LiDAR information.
arXiv Detail & Related papers (2020-01-15T16:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.