Generation, Characterization and Manipulation of Quantum Correlations in
Electron Beams
- URL: http://arxiv.org/abs/2007.12128v2
- Date: Wed, 11 Nov 2020 09:34:42 GMT
- Title: Generation, Characterization and Manipulation of Quantum Correlations in
Electron Beams
- Authors: Shahaf Asban and Javier Garc\'ia de Abajo
- Abstract summary: Entanglement engineering plays a central role in quantum-enhanced technologies.
However, free electrons remain largely unexplored despite their great capacity to encode and manipulate quantum information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement engineering plays a central role in quantum-enhanced
technologies, with potential physical platforms that outperform their classical
counterparts. However, free electrons remain largely unexplored despite their
great capacity to encode and manipulate quantum information, due in part the
lack of a suitable theoretical framework. Here we link theoretical concepts
from quantum information to available free-electron sources. Specifically, we
consider the interactions among electrons propagating near the surface of a
polariton-supporting medium, and study the entanglement induced by pair-wise
coupling. These correlations depend on controlled interaction interval and the
initial electron bandwidth. We show that long interaction times of broadband
electrons extend their temporal coherence. This in turn is revealed through a
widened Hong-Ou-Mandel peak, and associated with an increased entanglement
entropy. We then introduce a discrete basis of electronic temporal-modes, and
discriminate between them via coincidence detection with a shaped probe. This
paves the way for ultrafast quantum information transfer by means of free
electrons, rendering the large alphabet that they span in the time domain
accessible.
Related papers
- Strongly correlated multi-electron bunches from interaction with quantum light [0.09423257767158631]
We show that free electrons interacting simultaneously with a light field can become highly correlated via mechanisms beyond Coulomb interactions.
Our findings pave the way to the creation and control of highly correlated free electrons for applications including quantum information and ultra-fast imaging.
arXiv Detail & Related papers (2024-04-23T12:01:29Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Feasibility study on ground-state cooling and single-phonon readout of
trapped electrons using hybrid quantum systems [0.0]
Controlling the motional state of the trapped electron is a crucial issue.
We show that the ground-state cooling and the single-phonon readout of the motional state of the trapped electron are possible.
arXiv Detail & Related papers (2022-04-17T08:47:44Z) - Sign-switching of superexchange mediated by few electrons under
non-uniform magnetic field [7.33811357166334]
Long range interaction between distant spins is an important building block for the realization of large quantum-dot network.
Recent experiments on coherent logical states oscillation between remote spins facilitated by intermediate electron states has paved the first step for large scale quantum information processing.
Our work can be a guide to scale up the quantum-dot array with controllable and dense connectivity.
arXiv Detail & Related papers (2022-04-06T06:53:09Z) - Single electrons on solid neon as a solid-state qubit platform [10.980660117562438]
Novel qubit platforms embody long coherence, fast operation, and large scalability.
electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
arXiv Detail & Related papers (2021-06-18T19:35:16Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Strong electron-electron interactions in Si/SiGe quantum dots [0.0]
We study two-electron wavefunctions in electrostatically confined quantum dots formed in a SiGe/Si/SiGe quantum well at zero magnetic field.
Our calculations show that strong electron-electron interactions, induced by weak confinement, can significantly suppress the low-lying, singlet-triplet excitation energy.
These results have important implications for the rational design and fabrication of quantum dot qubits with predictable properties.
arXiv Detail & Related papers (2021-05-22T06:12:39Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.