Strongly correlated multi-electron bunches from interaction with quantum light
- URL: http://arxiv.org/abs/2404.14957v3
- Date: Tue, 14 May 2024 02:05:02 GMT
- Title: Strongly correlated multi-electron bunches from interaction with quantum light
- Authors: Suraj Kumar, Jeremy Lim, Nicholas Rivera, Wesley Wong, Yee Sin Ang, Lay Kee Ang, Liang Jie Wong,
- Abstract summary: We show that free electrons interacting simultaneously with a light field can become highly correlated via mechanisms beyond Coulomb interactions.
Our findings pave the way to the creation and control of highly correlated free electrons for applications including quantum information and ultra-fast imaging.
- Score: 0.09423257767158631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strongly correlated electron systems are a cornerstone of modern physics, being responsible for groundbreaking phenomena from superconducting magnets to quantum computing. In most cases, correlations in electrons arise exclusively due to Coulomb interactions. In this work, we reveal that free electrons interacting simultaneously with a light field can become highly correlated via mechanisms beyond Coulomb interactions. In the case of two electrons, the resulting Pearson correlation coefficient (PCC) for the joint probability distribution of the output electron energies is enhanced over 13 orders of magnitude compared to that of electrons interacting with the light field in succession (one after another). These highly correlated electrons are the result of momentum and energy exchange between the participating electrons via the external quantum light field. Our findings pave the way to the creation and control of highly correlated free electrons for applications including quantum information and ultra-fast imaging.
Related papers
- Electrons herald non-classical light [0.44270590458998854]
We demonstrate the coherent parametric generation of non-classical states of light by free electrons.
We show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide.
The approach facilitates the tailored preparation of higher-number Fock and other optical quantum states.
arXiv Detail & Related papers (2024-09-17T15:55:54Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Self-trapping of slow electrons in the energy domain [0.0]
We show that slow electrons are subject to strong confinement in the energy domain due to the non-vanishing curvature of the electron dispersion.
The spectral trap is tunable and an appropriate choice of light field parameters can reduce the interaction dynamics to only two energy states.
arXiv Detail & Related papers (2022-09-29T15:07:11Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum interference between fundamentally different processes is
enabled by shaped input wavefunctions [0.0]
We present a general framework for quantum interference (QI) between multiple, fundamentally different processes.
Our work shows that emerging quantum waveshaping techniques unlock the door to greater versatility in light-matter interactions and other quantum processes in general.
arXiv Detail & Related papers (2021-11-26T05:41:11Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Strong electron-electron interactions in Si/SiGe quantum dots [0.0]
We study two-electron wavefunctions in electrostatically confined quantum dots formed in a SiGe/Si/SiGe quantum well at zero magnetic field.
Our calculations show that strong electron-electron interactions, induced by weak confinement, can significantly suppress the low-lying, singlet-triplet excitation energy.
These results have important implications for the rational design and fabrication of quantum dot qubits with predictable properties.
arXiv Detail & Related papers (2021-05-22T06:12:39Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Generation, Characterization and Manipulation of Quantum Correlations in
Electron Beams [0.0]
Entanglement engineering plays a central role in quantum-enhanced technologies.
However, free electrons remain largely unexplored despite their great capacity to encode and manipulate quantum information.
arXiv Detail & Related papers (2020-07-23T16:55:39Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.