論文の概要: Clinical Recommender System: Predicting Medical Specialty Diagnostic
Choices with Neural Network Ensembles
- arxiv url: http://arxiv.org/abs/2007.12161v1
- Date: Thu, 23 Jul 2020 17:50:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 12:22:53.622575
- Title: Clinical Recommender System: Predicting Medical Specialty Diagnostic
Choices with Neural Network Ensembles
- Title(参考訳): 臨床レコメンデータシステム:ニューラルネットワークアンサンブルによる医療専門性診断選択の予測
- Authors: Morteza Noshad, Ivana Jankovic, Jonathan H. Chen
- Abstract要約: 本稿では,患者の最新の臨床記録に基づいて,必要な診断手順のセットを推奨するデータ駆動モデルを提案する。
これにより、医療システムは、患者の初期医療専門性診断ワークアップへのタイムリーなアクセスを拡大できる可能性がある。
- 参考スコア(独自算出の注目度): 6.015709234901588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for key healthcare resources such as clinical expertise
and facilities has motivated the emergence of artificial intelligence (AI)
based decision support systems. We address the problem of predicting clinical
workups for specialty referrals. As an alternative for manually-created
clinical checklists, we propose a data-driven model that recommends the
necessary set of diagnostic procedures based on the patients' most recent
clinical record extracted from the Electronic Health Record (EHR). This has the
potential to enable health systems expand timely access to initial medical
specialty diagnostic workups for patients. The proposed approach is based on an
ensemble of feed-forward neural networks and achieves significantly higher
accuracy compared to the conventional clinical checklists.
- Abstract(参考訳): 臨床専門知識や施設などの重要な医療資源に対する需要が高まり、人工知能(AI)に基づく意思決定支援システムの出現が動機となっている。
専門紹介会における臨床ワークアップ予測の問題に対処する。
手作業による臨床チェックリストの代替として,Electronic Health Record (EHR) から抽出された最新の臨床記録に基づいて,必要な診断手順のセットを推奨するデータ駆動モデルを提案する。
これにより、医療システムは患者の初期医療専門の診断作業にタイムリーにアクセスできるようになる可能性がある。
提案手法は, フィードフォワードニューラルネットワークのアンサンブルに基づき, 従来の臨床チェックリストに比べて精度が大幅に向上した。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
診療所の大規模言語モデル(LLM)をよりよく理解するためのベンチマークであるClimateBenchを構築した。
まず、さまざまな臨床言語の生成、理解、推論タスクを含む11の既存のデータセットを収集します。
次に,現実の実践において複雑だが一般的である6つの新しいデータセットと臨床タスクを構築した。
ゼロショット設定と少数ショット設定の両方で、20個のLDMを広範囲に評価する。
論文 参考訳(メタデータ) (2024-04-25T15:51:06Z) - Attention on Personalized Clinical Decision Support System: Federated
Learning Approach [15.642569319806716]
本稿では,統合学習パラダイムの下で訓練・管理された深層学習に基づく臨床意思決定支援システムを提案する。
我々は、患者のプライバシーの安全を保証し、サイバー攻撃のリスクを克服する新しい戦略に焦点を当てる。
論文 参考訳(メタデータ) (2024-01-22T07:24:15Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language
Processing [5.022185333260402]
診断推論ベンチマーク(DR.BENCH)は臨床診断推論能力を持つcNLPモデルの開発と評価のための新しいベンチマークである。
DR.BENCHは、訓練済みの言語モデルを評価するための自然言語生成フレームワークとして設計された最初の臨床スイートである。
論文 参考訳(メタデータ) (2022-09-29T16:05:53Z) - An NLP Solution to Foster the Use of Information in Electronic Health
Records for Efficiency in Decision-Making in Hospital Care [0.26340862968426904]
このプロジェクトは、ポルトガル語で書かれたフリーテキスト臨床記録内の属性を自動的に識別するためのルールを定義し、技術的ソリューションを開発することを目的としている。
プロジェクトの目標は、臨床医、疫学者、計算言語学者、機械学習研究者、ソフトウェアエンジニアを含む複数の学際的なチームによって達成された。
論文 参考訳(メタデータ) (2022-02-24T15:52:59Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
EBMとAIベースの臨床モデルとのギャップを埋める技術を導入する。
集中治療(ICU)患者情報に基づいて患者固有の文献を自動的に検索するシステムを提案する。
我々のモデルは,最近の強靭なベースラインと比較して,3つの課題に対する予測精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-11-16T11:19:02Z) - Clinical Evidence Engine: Proof-of-Concept For A
Clinical-Domain-Agnostic Decision Support Infrastructure [26.565616653685115]
本稿では,3つの領域にまたがって,このアプローチの技術的,設計的実現可能性を示す概念実証システムを提案する。
このシステムは、BioBERTを活用すれば、長い臨床質問に基づいて、治験報告を効果的に識別することができる。
ドメインに依存しない意思決定支援基盤として、DSTやアルゴリズムに限らず、DSTの説明を設計するという考え方について議論する。
論文 参考訳(メタデータ) (2021-10-31T23:21:25Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。