論文の概要: Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy
- arxiv url: http://arxiv.org/abs/2411.00178v1
- Date: Thu, 31 Oct 2024 19:48:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:39.777435
- Title: Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy
- Title(参考訳): 医用画像合成の臨床評価 : ワイヤレスカプセル内視鏡を例として
- Authors: Panagiota Gatoula, Dimitrios E. Diamantis, Anastasios Koulaouzidis, Cristina Carretero, Stefania Chetcuti-Zammit, Pablo Cortegoso Valdivia, Begoña González-Suárez, Alessandro Mussetto, John Plevris, Alexander Robertson, Bruno Rosa, Ervin Toth, Dimitris K. Iakovidis,
- Abstract要約: 本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
- 参考スコア(独自算出の注目度): 63.39037092484374
- License:
- Abstract: Sharing retrospectively acquired data is essential for both clinical research and training. Synthetic Data Generation (SDG), using Artificial Intelligence (AI) models, can overcome privacy barriers in sharing clinical data, enabling advancements in medical diagnostics. This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images. The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis, with a comprehensive qualitative evaluation conducted by 10 international WCE specialists, focusing on image quality, diversity, realism, and clinical decision-making. The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools. The proposed protocol serves as a reference for future research on medical image-generation techniques.
- Abstract(参考訳): 遡及的に取得したデータを共有することは臨床研究とトレーニングの両方に不可欠である。
人工知能(AI)モデルを使用した合成データ生成(SDG)は、臨床データを共有する際のプライバシー障壁を克服し、医療診断の進歩を可能にする。
本研究は,無線カプセル内視鏡(WCE)画像を用いた炎症性腸疾患(IBD)の診断における概念実証による医療用SDGの臨床評価に焦点を当てた。
その論文は貢献する
イ 医療専門家による合成画像の系統的評価に関する議定書を提出すること。
b)高精細度WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIの評価に適用し、画像品質、多様性、リアリズム及び臨床意思決定に焦点をあてた10の国際WCE専門家による総合的質的評価を行う。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
提案プロトコルは将来の医用画像生成技術研究の参考となる。
関連論文リスト
- CBIDR: A novel method for information retrieval combining image and data by means of TOPSIS applied to medical diagnosis [1.8416014644193066]
そこで我々は,患者の医療画像と臨床データの両方を活用するCBIDRという新しい手法を提案し,それらをランキングアルゴリズムToPSISを用いて組み合わせた。
精度の面での実験結果は、Top-1で97.44%、Top-5で100%達成し、提案手法の有効性を示した。
論文 参考訳(メタデータ) (2024-09-26T16:04:36Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
本稿では,様々な医療データ型を合成するための生成モデルについて,体系的に検討する。
本研究は、幅広い医療データモダリティを包含し、様々な生成モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-27T14:00:11Z) - EndoOOD: Uncertainty-aware Out-of-distribution Detection in Capsule
Endoscopy Diagnosis [11.82953216903558]
ワイヤレスカプセル内視鏡(Wireless capsule endoscopy, WCE)は、消化管(GI)の可視化を可能にする非侵襲的診断法である。
深層学習に基づく手法は、WCEデータを用いた疾患スクリーニングの有効性を示した。
既存のカプセル内視鏡分類法は、主に事前に定義されたカテゴリーに依存している。
論文 参考訳(メタデータ) (2024-02-18T06:54:51Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - This Intestine Does Not Exist: Multiscale Residual Variational
Autoencoder for Realistic Wireless Capsule Endoscopy Image Generation [7.430724826764835]
新規な変分オートエンコーダアーキテクチャ,すなわち "This Intestine Don Not Exist" (TIDE) を提案する。
提案アーキテクチャは,マルチスケールな特徴抽出畳み込みブロックと残差接続を備え,高品質で多様なデータセットの生成を可能にする。
利用可能なデータセットの増大を指向した現在のアプローチとは対照的に,本研究では,TIDEを用いて実際のWCEデータセットを完全に置換できることを実証する。
論文 参考訳(メタデータ) (2023-02-04T11:49:38Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Fusing Medical Image Features and Clinical Features with Deep Learning
for Computer-Aided Diagnosis [7.99493100852929]
本稿では,MRI/CT画像と臨床情報を融合した新たな深層学習手法を提案する。
本研究では,アルツハイマー病診断,軽度認知障害コンバータ予測,肝微小血管浸潤診断への応用について検討した。
論文 参考訳(メタデータ) (2021-03-10T03:37:21Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。