Dipolar evaporation of reactive molecules to below the Fermi temperature
- URL: http://arxiv.org/abs/2007.12277v1
- Date: Thu, 23 Jul 2020 22:02:59 GMT
- Title: Dipolar evaporation of reactive molecules to below the Fermi temperature
- Authors: Giacomo Valtolina, Kyle Matsuda, William G. Tobias, Jun-Ru Li, Luigi
De Marco and Jun Ye
- Abstract summary: Inelastic losses in molecular collisions have greatly hampered the engineering of low-entropy molecular systems.
Here, we use an external electric field along with optical lattice confinement to create a two-dimensional (2D) Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules.
Direct thermalization among the molecules in the trap leads to efficient dipolar cooling, yielding a rapid increase in phase-space density.
- Score: 2.9989215527241453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecules are the building blocks of matter and their control is key to the
investigation of new quantum phases, where rich degrees of freedom can be used
to encode information and strong interactions can be precisely tuned. Inelastic
losses in molecular collisions, however, have greatly hampered the engineering
of low-entropy molecular systems. So far, the only quantum degenerate gas of
molecules has been created via association of two highly degenerate atomic
gases. Here, we use an external electric field along with optical lattice
confinement to create a two-dimensional (2D) Fermi gas of spin-polarized
potassium-rubidium (KRb) polar molecules, where elastic, tunable dipolar
interactions dominate over all inelastic processes. Direct thermalization among
the molecules in the trap leads to efficient dipolar evaporative cooling,
yielding a rapid increase in phase-space density. At the onset of quantum
degeneracy, we observe the effects of Fermi statistics on the thermodynamics of
the molecular gas. These results demonstrate a general strategy for achieving
quantum degeneracy in dipolar molecular gases to explore strongly interacting
many-body phases.
Related papers
- The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Collisionally Stable Gas of Bosonic Dipolar Ground State Molecules [2.686226765720665]
We stabilize a bosonic gas of strongly dipolar NaCs molecules against inelastic losses via microwave shielding.
We also measure high elastic scattering rates, a result of strong dipolar interactions, and observe the anisotropic nature of dipolar collisions.
This work is a critical step towards the creation of a Bose-Einstein condensate of dipolar molecules.
arXiv Detail & Related papers (2023-03-29T16:51:07Z) - Purcell-induced suppression of superradiance for molecular overlayers on
noble atom surfaces [0.0]
We study the impact of an environment on the electromagnetic responses of a molecule in the presence of a dielectric medium.
We predict excitation lifetimes of single and few molecules attached to a dielectric surface by knowing the entire quantum-mechanical properties of the molecules.
arXiv Detail & Related papers (2022-11-03T08:53:13Z) - Evaporation of microwave-shielded polar molecules to quantum degeneracy [1.8133492406483585]
We demonstrate cooling of a three-dimensional gas of fermionic sodium-potassium molecules to well below the Fermi temperature using microwave shielding.
The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave.
This large elastic-to-inelastic collision ratio allows us to cool the molecular gas down to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature.
arXiv Detail & Related papers (2022-01-13T18:53:27Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Tuning of dipolar interactions and evaporative cooling in a
three-dimensional molecular quantum gas [2.409938612878261]
We demonstrate tunable elastic dipolar interactions in a bulk gas of ultracold 40K87Rb molecules in 3D.
This improvement in the ratio of elastic to inelastic collisions enables direct thermalization.
We achieve evaporative cooling mediated by the dipolar interactions in three dimensions.
arXiv Detail & Related papers (2021-03-10T18:27:48Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Vibrational quenching of cold molecular ions immersed in their parent
gas [0.0]
We study theoretically the process of vibrational relaxation of an initially weakly bound molecular ion due to collisions with background gas atoms.
We find that the inelastic collisions lead predominantly to small changes in the binding energy of the molecular ion.
arXiv Detail & Related papers (2020-03-03T10:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.