Collisionally Stable Gas of Bosonic Dipolar Ground State Molecules
- URL: http://arxiv.org/abs/2303.16845v2
- Date: Mon, 25 Sep 2023 19:03:17 GMT
- Title: Collisionally Stable Gas of Bosonic Dipolar Ground State Molecules
- Authors: Niccol\`o Bigagli, Claire Warner, Weijun Yuan, Siwei Zhang, Ian
Stevenson, Tijs Karman, and Sebastian Will
- Abstract summary: We stabilize a bosonic gas of strongly dipolar NaCs molecules against inelastic losses via microwave shielding.
We also measure high elastic scattering rates, a result of strong dipolar interactions, and observe the anisotropic nature of dipolar collisions.
This work is a critical step towards the creation of a Bose-Einstein condensate of dipolar molecules.
- Score: 2.686226765720665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stable ultracold ensembles of dipolar molecules hold great promise for
many-body quantum physics, but high inelastic loss rates have been a
long-standing challenge. Recently, it was shown that gases of fermionic
molecules can be effectively stabilized through external fields. However, many
quantum applications will benefit from molecular ensembles with bosonic
statistics. Here, we stabilize a bosonic gas of strongly dipolar NaCs molecules
against inelastic losses via microwave shielding, decreasing losses by more
than a factor of 200 and reaching lifetimes on the scale of 1 second. We also
measure high elastic scattering rates, a result of strong dipolar interactions,
and observe the anisotropic nature of dipolar collisions. Finally, we
demonstrate evaporative cooling of a bosonic molecular gas to a temperature of
36(5) nK, increasing its phase-space density by a factor of 20. This work is a
critical step towards the creation of a Bose-Einstein condensate of dipolar
molecules.
Related papers
- Confinement-induced field-linked states of ultracold polar molecules [0.0]
We predict the existence of stable bound states between pairs of ultracold diatomic molecules with the aid of a static electric field and 1D harmonic confinement.
With the diatomic molecules bound at distances a fraction of the dipolar length scale, these complexes allow for explorations of polyatomic chemistry and Fermi gas superfluid pairing.
arXiv Detail & Related papers (2024-09-12T23:48:12Z) - Observation of Bose-Einstein Condensation of Dipolar Molecules [2.820929542705023]
We report on the realization of a Bose-Einstein condensate (BEC) of dipolar molecules.
BECs with a condensate fraction of 60 % and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 seconds.
This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far.
arXiv Detail & Related papers (2023-12-18T06:40:54Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Evaporation of microwave-shielded polar molecules to quantum degeneracy [1.8133492406483585]
We demonstrate cooling of a three-dimensional gas of fermionic sodium-potassium molecules to well below the Fermi temperature using microwave shielding.
The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave.
This large elastic-to-inelastic collision ratio allows us to cool the molecular gas down to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature.
arXiv Detail & Related papers (2022-01-13T18:53:27Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Dipolar evaporation of reactive molecules to below the Fermi temperature [2.9989215527241453]
Inelastic losses in molecular collisions have greatly hampered the engineering of low-entropy molecular systems.
Here, we use an external electric field along with optical lattice confinement to create a two-dimensional (2D) Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules.
Direct thermalization among the molecules in the trap leads to efficient dipolar cooling, yielding a rapid increase in phase-space density.
arXiv Detail & Related papers (2020-07-23T22:02:59Z) - Atomic Bose-Einstein condensate to molecular Bose-Einstein condensate
transition [7.369520570974015]
We report the formation of two-dimensional Bose-Einstein condensates (BECs) of spinning $g-$wave molecules by inducing pairing interactions in an atomic condensate.
Our work confirms the long-sought transition between atomic and molecular condensates, the bosonic analog of the BEC-BCS (Bardeen-Cooper-Schieffer superfluid) crossover in a Fermi gas.
arXiv Detail & Related papers (2020-06-27T06:51:31Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.