論文の概要: Learning Crisp Edge Detector Using Logical Refinement Network
- arxiv url: http://arxiv.org/abs/2007.12449v1
- Date: Fri, 24 Jul 2020 11:12:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 06:47:42.087658
- Title: Learning Crisp Edge Detector Using Logical Refinement Network
- Title(参考訳): 論理リファインメントネットワークを用いたCrspエッジ検出器の学習
- Authors: Luyan Liu, Kai Ma, Yefeng Zheng
- Abstract要約: 本稿では,セグメント化とエッジマップの論理的関係を動機とした,クリップエッジ検出のための新しい論理改良ネットワークを提案する。
このネットワークは、結合オブジェクトとエッジ検出ネットワークと、より正確で、よりクリアで、より薄い高品質のバイナリエッジマップを予測するクリップエッジリファインメントネットワークで構成されている。
- 参考スコア(独自算出の注目度): 29.59728791893451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge detection is a fundamental problem in different computer vision tasks.
Recently, edge detection algorithms achieve satisfying improvement built upon
deep learning. Although most of them report favorable evaluation scores, they
often fail to accurately localize edges and give thick and blurry boundaries.
In addition, most of them focus on 2D images and the challenging 3D edge
detection is still under-explored. In this work, we propose a novel logical
refinement network for crisp edge detection, which is motivated by the logical
relationship between segmentation and edge maps and can be applied to both 2D
and 3D images. The network consists of a joint object and edge detection
network and a crisp edge refinement network, which predicts more accurate,
clearer and thinner high quality binary edge maps without any post-processing.
Extensive experiments are conducted on the 2D nuclei images from Kaggle 2018
Data Science Bowl and a private 3D microscopy images of a monkey brain, which
show outstanding performance compared with state-of-the-art methods.
- Abstract(参考訳): エッジ検出は、異なるコンピュータビジョンタスクにおける根本的な問題である。
近年,エッジ検出アルゴリズムは深層学習に基づく改善を実現している。
たいていの評価スコアは良好だが、エッジを正確にローカライズできず、太くぼやけた境界を与えることが多い。
さらに、そのほとんどは2D画像に焦点を当てており、挑戦的な3Dエッジ検出はまだ未調査である。
本研究では,分割とエッジマップの論理関係を動機とし,2次元画像と3次元画像の両方に適用可能な,クリスプエッジ検出のための新しい論理改良ネットワークを提案する。
このネットワークは、結合オブジェクトとエッジ検出ネットワークと、より正確で、よりクリアで、より薄い高品質のバイナリエッジマップを後処理なしで予測するクリップエッジリファインメントネットワークで構成されている。
Kaggle 2018 Data Science Bowlの2D核画像とサルの脳のプライベート3D顕微鏡画像は、最先端の手法と比較して優れた性能を示している。
関連論文リスト
- Learning to utilize image second-order derivative information for crisp edge detection [13.848361661516595]
エッジ検出はコンピュータビジョンの基本課題である。
最近のトップパフォーマンスエッジ検出手法は、厚くノイズの多いエッジラインを生成する傾向にある。
本稿では,モデルが真のエッジピクセルを正確に検出するのに役立つ2階微分型マルチスケールコンテキスト拡張モジュール(SDMCM)を提案する。
また、不均衡分布問題を軽減するために、ハイブリッド焦点損失関数(HFL)を構築した。
最後に、エッジ検出のためのSDMCMとBRMに基づくLUS-NetというU字型ネットワークを提案する。
論文 参考訳(メタデータ) (2024-06-09T13:25:02Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
本稿では,教師として事前訓練されたディープイメージエンコーダ,学生としてディープポイントエンコーダを含む多視点クロスモーダル蒸留アーキテクチャを提案する。
複数ビューの視覚的および幾何学的記述子をペアワイズにアライメントすることで、より強力なディープポイントエンコーダを、疲労や複雑なネットワーク修正を伴わずに得ることができる。
論文 参考訳(メタデータ) (2022-07-07T07:23:20Z) - DetMatch: Two Teachers are Better Than One for Joint 2D and 3D
Semi-Supervised Object Detection [29.722784254501768]
DetMatchは、2Dおよび3Dモダリティに関する共同半教師付き学習のための柔軟なフレームワークである。
両方のセンサーで検出された物体を識別することで、パイプラインはよりクリーンで堅牢な擬似ラベルを生成する。
我々はRGB画像のよりリッチなセマンティクスを活用して、誤った3Dクラスの予測を修正し、3Dボックスのローカライズを改善する。
論文 参考訳(メタデータ) (2022-03-17T17:58:00Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
非均質な画像コレクションから変形可能な3Dジオメトリモデルを学ぶためのトレーニング可能なフレームワークを提案する。
さらに,2次元画像で表現された物体の3次元形状も取得する。
論文 参考訳(メタデータ) (2021-03-31T17:25:36Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
2Dおよび3Dの関節の特徴を抽出することを学ぶシンプルで効果的なニューラルネットワークブロックを設計します。
具体的には、画像画素に2D畳み込みと3D点に連続畳み込みを施した2つのドメイン固有のサブネットワークから構成される。
論文 参考訳(メタデータ) (2020-12-22T22:58:29Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z) - JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D
Point Clouds [37.703770427574476]
本稿では,初めて3次元意味的エッジ検出タスクに取り組む。
本稿では,2つのタスクを共同で行う2ストリーム完全畳み込みネットワークを提案する。
特に,両タスクの性能向上のために,領域情報とエッジ情報を明示的に関連付ける共同改良モジュールを設計する。
論文 参考訳(メタデータ) (2020-07-14T08:00:35Z) - Learning Depth With Very Sparse Supervision [57.911425589947314]
本稿では, 環境との相互作用を通じて, 知覚が世界の3次元特性と結合するという考えを考察する。
我々は、環境と対話するロボットが利用できるような、特殊なグローバルローカルネットワークアーキテクチャを訓練する。
いくつかのデータセットの実験では、画像ピクセルの1つでも基底真理が利用できる場合、提案されたネットワークは、最先端のアプローチよりも22.5%の精度でモノクロの深度推定を学習できることを示している。
論文 参考訳(メタデータ) (2020-03-02T10:44:13Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
本研究では,エッジとサリエンシマップをマージして,サリエンシマップの性能を向上させる手法を開発した。
これにより、DUT-OMRONデータセットの少なくとも3.4倍の平均的な改善により、エッジ(SEE)を使用したサリエンシ向上が提案された。
SEEアルゴリズムは前処理のためのSEE-Preと後処理のためのSEE-Postの2つの部分に分けられる。
論文 参考訳(メタデータ) (2020-02-11T14:04:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。