論文の概要: Learning Joint 2D-3D Representations for Depth Completion
- arxiv url: http://arxiv.org/abs/2012.12402v1
- Date: Tue, 22 Dec 2020 22:58:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:27:19.145850
- Title: Learning Joint 2D-3D Representations for Depth Completion
- Title(参考訳): 深度完了のための2次元3次元共同表現の学習
- Authors: Yun Chen, Bin Yang, Ming Liang, Raquel Urtasun
- Abstract要約: 2Dおよび3Dの関節の特徴を抽出することを学ぶシンプルで効果的なニューラルネットワークブロックを設計します。
具体的には、画像画素に2D畳み込みと3D点に連続畳み込みを施した2つのドメイン固有のサブネットワークから構成される。
- 参考スコア(独自算出の注目度): 90.62843376586216
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we tackle the problem of depth completion from RGBD data.
Towards this goal, we design a simple yet effective neural network block that
learns to extract joint 2D and 3D features. Specifically, the block consists of
two domain-specific sub-networks that apply 2D convolution on image pixels and
continuous convolution on 3D points, with their output features fused in image
space. We build the depth completion network simply by stacking the proposed
block, which has the advantage of learning hierarchical representations that
are fully fused between 2D and 3D spaces at multiple levels. We demonstrate the
effectiveness of our approach on the challenging KITTI depth completion
benchmark and show that our approach outperforms the state-of-the-art.
- Abstract(参考訳): 本稿では,RGBDデータからの深度補完問題に取り組む。
この目標に向けて,2dと3dのジョイント特徴を抽出することを学ぶ,単純かつ効果的なニューラルネットワークブロックをデザインする。
具体的には、画像画素に2D畳み込みと3D点に連続畳み込みを施した2つのドメイン固有のサブネットワークで構成され、その出力特性は画像空間に融合する。
提案したブロックを積み重ねることで,複数のレベルで2次元空間と3次元空間の間に完全に融合した階層表現を学習することができる。
我々は,KITTI深度補完ベンチマークにおけるアプローチの有効性を実証し,提案手法が最先端の手法よりも優れていることを示す。
関連論文リスト
- Pyramid Deep Fusion Network for Two-Hand Reconstruction from RGB-D Images [11.100398985633754]
両手で高密度メッシュを復元するためのエンドツーエンドフレームワークを提案する。
我々のフレームワークはResNet50とPointNet++を使って、RGBとpoint cloudから機能を派生しています。
また,異なるスケールで特徴を集約する新しいピラミッド深層核融合ネットワーク (PDFNet) も導入した。
論文 参考訳(メタデータ) (2023-07-12T09:33:21Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
本研究では,3Dアノテーションを使わずにセマンティックなシーン再構成を行う中心的な3Dシーンモデリングタスクについて検討する。
提案手法の鍵となる考え方は,不完全な3次元再構成と対応するRGB-D画像の両方を用いたトレーニング可能なモデルの設計である。
本研究では,2つの大規模ベンチマークデータセットであるMatterPort3DとScanNetに対して,セマンティックシーン補完の最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-07T17:47:52Z) - Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic
Segmentation [17.557697146752652]
2Dと3Dセマンティックセマンティックセグメンテーションは3Dシーン理解において主流になっている。
この2つの異なる空間から立体的特徴を融合し処理する方法はまだ解明されていない。
本稿では,その単純さに拘わらず,一方向の多視点2次元深部セマンティックな特徴を3次元の深部セマンティックな特徴と整合した3次元空間に投影することで,より優れた機能融合がもたらされることを論じる。
論文 参考訳(メタデータ) (2022-12-13T15:58:25Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
本稿では,教師として事前訓練されたディープイメージエンコーダ,学生としてディープポイントエンコーダを含む多視点クロスモーダル蒸留アーキテクチャを提案する。
複数ビューの視覚的および幾何学的記述子をペアワイズにアライメントすることで、より強力なディープポイントエンコーダを、疲労や複雑なネットワーク修正を伴わずに得ることができる。
論文 参考訳(メタデータ) (2022-07-07T07:23:20Z) - Bidirectional Projection Network for Cross Dimension Scene Understanding [69.29443390126805]
本稿では,2次元および3次元の連立推論のための縦方向投影網(BPNet)をエンドツーエンドに提示する。
emphBPM、補完的な2D、および3D情報は、複数のアーキテクチャレベルで相互に相互作用することができる。
我々のemphBPNetは2次元および3次元セマンティックセマンティックセグメンテーションのためのScanNetV2ベンチマークで最高性能を達成した。
論文 参考訳(メタデータ) (2021-03-26T08:31:39Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z) - Self-supervised Feature Learning by Cross-modality and Cross-view
Correspondences [32.01548991331616]
本稿では,2次元画像特徴と3次元ポイントクラウド特徴の両方を学習するための,自己指導型学習手法を提案する。
注釈付きラベルを使わずに、クロスモダリティとクロスビュー対応を利用する。
学習した2次元特徴と3次元特徴の有効性を5つの異なるタスクで伝達することによって評価する。
論文 参考訳(メタデータ) (2020-04-13T02:57:25Z) - 3dDepthNet: Point Cloud Guided Depth Completion Network for Sparse Depth
and Single Color Image [42.13930269841654]
我々のネットワークは、正確かつ軽量な3次元から2次元の粗大な二重密度化設計を提供する。
KITTIデータセットの実験は、我々のネットワークがより効率的でありながら最先端の精度を実現していることを示している。
論文 参考訳(メタデータ) (2020-03-20T10:19:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。