論文の概要: Detecting malicious PDF using CNN
- arxiv url: http://arxiv.org/abs/2007.12729v2
- Date: Sun, 2 Aug 2020 10:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 07:16:55.763751
- Title: Detecting malicious PDF using CNN
- Title(参考訳): CNNを用いた悪意のあるPDFの検出
- Authors: Raphael Fettaya and Yishay Mansour
- Abstract要約: 悪意のあるPDFファイルは、コンピュータセキュリティに対する最大の脅威の1つだ。
本稿では,ファイルのバイトレベルにおける畳み込みニューラルネットワーク(CNN)のアンサンブルを用いた新しいアルゴリズムを提案する。
オンラインでダウンロード可能な90000ファイルのデータセットを用いて,本手法はPDFマルウェアの高検出率(94%)を維持していることを示す。
- 参考スコア(独自算出の注目度): 46.86114958340962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malicious PDF files represent one of the biggest threats to computer
security. To detect them, significant research has been done using handwritten
signatures or machine learning based on manual feature extraction. Those
approaches are both time-consuming, require significant prior knowledge and the
list of features has to be updated with each newly discovered vulnerability. In
this work, we propose a novel algorithm that uses an ensemble of Convolutional
Neural Network (CNN) on the byte level of the file, without any handcrafted
features. We show, using a data set of 90000 files downloadable online, that
our approach maintains a high detection rate (94%) of PDF malware and even
detects new malicious files, still undetected by most antiviruses. Using
automatically generated features from our CNN network, and applying a
clustering algorithm, we also obtain high similarity between the antiviruses'
labels and the resulting clusters.
- Abstract(参考訳): 悪意のあるPDFファイルは、コンピュータセキュリティに対する最大の脅威の1つだ。
それらを検出するために、手書きのシグネチャや手動の特徴抽出に基づく機械学習を用いて重要な研究が行われた。
これらのアプローチはどちらも時間を要するため、事前知識が必要であり、新たに発見された脆弱性ごとに機能のリストを更新する必要がある。
本研究では,ファイルのバイトレベルでの畳み込みニューラルネットワーク(CNN)のアンサンブルを利用する新しいアルゴリズムを提案する。
オンラインダウンロード可能な90000ファイルのデータセットを用いて、我々のアプローチはPDFマルウェアの高検出率(94%)を維持し、新しい悪意のあるファイルも検出している。
CNNネットワークから自動生成した特徴とクラスタリングアルゴリズムを適用することにより、抗ウイルスラベルと結果のクラスタとの間に高い類似性が得られる。
関連論文リスト
- Towards Novel Malicious Packet Recognition: A Few-Shot Learning Approach [0.0]
Deep Packet Inspection (DPI)は、ネットワークセキュリティを強化する重要な技術として登場した。
本研究では,大規模言語モデル(LLM)と少数ショット学習を活用する新しいアプローチを提案する。
提案手法は,マルウェアの種類によって平均精度86.35%,F1スコア86.40%の有望な結果を示す。
論文 参考訳(メタデータ) (2024-09-17T15:02:32Z) - Online Clustering of Known and Emerging Malware Families [1.2289361708127875]
マルウェアのサンプルを悪質な特徴に応じて分類することが不可欠である。
オンラインクラスタリングアルゴリズムは、マルウェアの振る舞いを理解し、新たな脅威に対する迅速な応答を生み出すのに役立ちます。
本稿では,悪意のあるサンプルをオンラインクラスタリングしてマルウェア群に分類する,新しい機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-06T09:20:17Z) - A Feature Set of Small Size for the PDF Malware Detection [8.282177703075451]
PDFファイルのドメイン知識をあまり必要としない小さな機能セットを提案する。
ランダムフォレストモデルを用いた場合の最適精度は99.75%である。
その質素なサイズにもかかわらず、我々は、はるかに大きな機能セットを使用する最先端技術に匹敵する結果を得る。
論文 参考訳(メタデータ) (2023-08-09T04:51:28Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - Adversarial Networks and Machine Learning for File Classification [0.0]
検査中のファイルの種類を正しく特定することは、法医学的な調査の重要な部分である。
本稿では、逆学習された機械学習ニューラルネットワークを用いてファイルの真の型を決定することを提案する。
半教師付き生成敵ネットワーク(SGAN)は,11種類のファイルの分類において97.6%の精度を達成した。
論文 参考訳(メタデータ) (2023-01-27T19:40:03Z) - HAPSSA: Holistic Approach to PDF Malware Detection Using Signal and
Statistical Analysis [16.224649756613655]
悪意あるPDF文書は、様々なセキュリティ組織に深刻な脅威をもたらす。
最先端のアプローチでは、機械学習(ML)を使用してPDFマルウェアを特徴付ける機能を学ぶ。
本稿では,PDF マルウェア検出のための簡易かつ効果的な総合的なアプローチを導出する。
論文 参考訳(メタデータ) (2021-11-08T18:32:47Z) - Reversible Watermarking in Deep Convolutional Neural Networks for
Integrity Authentication [78.165255859254]
整合性認証のための可逆透かしアルゴリズムを提案する。
可逆透かしを埋め込むことが分類性能に及ぼす影響は0.5%未満である。
同時に、可逆的な透かしを適用することでモデルの完全性を検証することができる。
論文 参考訳(メタデータ) (2021-04-09T09:32:21Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Noise-Response Analysis of Deep Neural Networks Quantifies Robustness
and Fingerprints Structural Malware [48.7072217216104]
ディープ・ニューラル・ネットワーク(DNN)は構造的マルウェア(すなわち、重みと活性化経路)を持つ
バックドアの検出は一般的に困難であり、既存の検出手法は計算に高価であり、膨大なリソースを必要とする(トレーニングデータへのアクセスなど)。
そこで本研究では,DNNの堅牢性,指紋の非線形性を定量化し,バックドアの検出を可能にする,高速な特徴生成手法を提案する。
実験の結果,既存の手法(秒対秒)よりも高い信頼度でバックドアを正確に検出できることが判明した。
論文 参考訳(メタデータ) (2020-07-31T23:52:58Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。