論文の概要: Towards Novel Malicious Packet Recognition: A Few-Shot Learning Approach
- arxiv url: http://arxiv.org/abs/2409.11254v1
- Date: Tue, 17 Sep 2024 15:02:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:13:34.001430
- Title: Towards Novel Malicious Packet Recognition: A Few-Shot Learning Approach
- Title(参考訳): 新たな悪意あるパケット認識を目指して : わずかなショット学習アプローチ
- Authors: Kyle Stein, Andrew A. Mahyari, Guillermo Francia III, Eman El-Sheikh,
- Abstract要約: Deep Packet Inspection (DPI)は、ネットワークセキュリティを強化する重要な技術として登場した。
本研究では,大規模言語モデル(LLM)と少数ショット学習を活用する新しいアプローチを提案する。
提案手法は,マルウェアの種類によって平均精度86.35%,F1スコア86.40%の有望な結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the complexity and connectivity of networks increase, the need for novel malware detection approaches becomes imperative. Traditional security defenses are becoming less effective against the advanced tactics of today's cyberattacks. Deep Packet Inspection (DPI) has emerged as a key technology in strengthening network security, offering detailed analysis of network traffic that goes beyond simple metadata analysis. DPI examines not only the packet headers but also the payload content within, offering a thorough insight into the data traversing the network. This study proposes a novel approach that leverages a large language model (LLM) and few-shot learning to accurately recognizes novel, unseen malware types with few labels samples. Our proposed approach uses a pretrained LLM on known malware types to extract the embeddings from packets. The embeddings are then used alongside few labeled samples of an unseen malware type. This technique is designed to acclimate the model to different malware representations, further enabling it to generate robust embeddings for each trained and unseen classes. Following the extraction of embeddings from the LLM, few-shot learning is utilized to enhance performance with minimal labeled data. Our evaluation, which utilized two renowned datasets, focused on identifying malware types within network traffic and Internet of Things (IoT) environments. Our approach shows promising results with an average accuracy of 86.35% and F1-Score of 86.40% on different malware types across the two datasets.
- Abstract(参考訳): ネットワークの複雑化と接続性の向上に伴い,新たなマルウェア検出手法の必要性が高まっている。
従来のセキュリティ防衛は、今日のサイバー攻撃の先進的な戦術に対する効果が薄れつつある。
Deep Packet Inspection (DPI)は、単純なメタデータ分析を超えてネットワークトラフィックの詳細な分析を提供する、ネットワークセキュリティを強化する重要な技術として登場した。
DPIはパケットヘッダだけでなくペイロードの内容も調査し、ネットワークを横断するデータに関する詳細な洞察を提供する。
本研究では,大規模言語モデル(LLM)と少数ショット学習を活用して,ラベルの少ない新規なマルウェアタイプを正確に認識する手法を提案する。
提案手法では,既知のマルウェアに対して事前学習したLSMを用いて,パケットから埋め込みを抽出する。
埋め込みは、未確認のマルウェアタイプのラベル付きサンプルと並行して使用される。
この技術は、モデルを異なるマルウェア表現に順応させ、トレーニングされたクラスと見えないクラスごとに堅牢な埋め込みを生成するように設計されている。
LLMから埋め込みを抽出した後、最小ラベル付きデータによる性能向上のために、少数ショット学習を利用する。
評価では,ネットワークトラフィックとIoT(Internet of Things)環境におけるマルウェアの種類を特定することに焦点を当てた。
提案手法では,2つのデータセットの平均精度86.35%,F1スコア86.40%の有望な結果を示す。
関連論文リスト
- Revolutionizing Payload Inspection: A Self-Supervised Journey to Precision with Few Shots [0.0]
従来のセキュリティ対策は、現代のサイバー攻撃の高度化に対して不十分である。
Deep Packet Inspection (DPI)は、ネットワークセキュリティの強化において重要な役割を担っている。
先進的なディープラーニング技術とDPIの統合は、マルウェア検出に現代的な手法を導入している。
論文 参考訳(メタデータ) (2024-09-26T18:55:52Z) - A Survey of Malware Detection Using Deep Learning [6.349503549199403]
本稿では,ディープラーニング(DL)を用いたWindows,iOS,Android,Linuxにおけるマルウェア検出の進歩について検討する。
本稿では,DL分類器を用いたマルウェア検出の問題点と課題について論じる。
各種データセットに対する8つの一般的なDLアプローチについて検討する。
論文 参考訳(メタデータ) (2024-07-27T02:49:55Z) - Preliminary study on artificial intelligence methods for cybersecurity threat detection in computer networks based on raw data packets [34.82692226532414]
本稿では,ネットワークトラフィック内の生パケットデータから直接リアルタイムに攻撃を検知できるディープラーニング手法について検討する。
コンピュータビジョンモデルを用いた処理に適した2次元画像表現を用いて,パケットをウィンドウに積み重ねて別々に認識する手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T15:04:00Z) - Do You Trust Your Model? Emerging Malware Threats in the Deep Learning
Ecosystem [37.650342256199096]
ニューラルネットワークに自己抽出型自己実行型マルウェアを組み込むテクニックであるMaleficNet 2.0を紹介する。
MaleficNet 2.0インジェクションテクニックはステルス性があり、モデルのパフォーマンスを低下させることなく、除去テクニックに対して堅牢である。
我々は、MaleficNet 2.0を用いた概念実証型自己抽出ニューラルネットワークマルウェアを実装し、広く採用されている機械学習フレームワークに対する攻撃の実用性を実証した。
論文 参考訳(メタデータ) (2024-03-06T10:27:08Z) - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep
Learning Paradigms [39.753721029332326]
バックドアデータ検出は、エンドツーエンドの教師あり学習(SL)設定で伝統的に研究されている。
近年,ラベル付きデータの必要性の低さから,自己教師付き学習(SSL)や転送学習(TL)の普及が進んでいる。
既存の検出手法の性能は様々な攻撃や毒素比で大きく異なり、すべて最先端のクリーンラベル攻撃では失敗する。
論文 参考訳(メタデータ) (2023-02-22T14:43:33Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
既存のマルウェア検出方法は、トレーニングデータセットに難読化されたマルウェアサンプルが存在する場合、異なるマルウェアファミリーを正しく分類できない。
そこで我々は,このような制御フロー難読化技術に対して耐性を持つ,タスク対応の複数ショット学習型サイメスニューラルネットワークを提案する。
提案手法は,同一のマルウェアファミリーに属するマルウェアサンプルを正しく分類し,ユニークなマルウェアシグネチャの認識に極めて有効である。
論文 参考訳(メタデータ) (2021-10-26T04:44:13Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - IoT Malware Network Traffic Classification using Visual Representation
and Deep Learning [1.7205106391379026]
ディープラーニングと視覚表現を用いた新しいIoTマルウェアトラフィック分析手法を提案する。
提案手法における悪意あるネットワークトラフィックの検出はパッケージレベルで動作し,検出時間を大幅に短縮する。
Residual Neural Network(ResNet50)の実験結果は、マルウェアのトラフィックを検出するための94.50%の精度で、非常に有望である。
論文 参考訳(メタデータ) (2020-10-04T22:44:04Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。