論文の概要: IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social
Media Text using Deep Neural Networks and Linear Baselines
- arxiv url: http://arxiv.org/abs/2007.12733v1
- Date: Fri, 24 Jul 2020 18:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 06:39:38.738902
- Title: IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social
Media Text using Deep Neural Networks and Linear Baselines
- Title(参考訳): IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text using Deep Neural Networks and Linear Baselines (特集:情報ネットワーク)
- Authors: Soroush Javdan, Taha Shangipour ataei and Behrouz Minaei-Bidgoli
- Abstract要約: 我々は、与えられたコードミックスツイートの感情を予測するシステムを開発した。
我々の最高の演奏法は、スペイン語のサブタスクに対して0.751得点、ヒンディー語のサブタスクに対して0.706スコアを得る。
- 参考スコア(独自算出の注目度): 6.866104126509981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment Analysis is a well-studied field of Natural Language Processing.
However, the rapid growth of social media and noisy content within them poses
significant challenges in addressing this problem with well-established methods
and tools. One of these challenges is code-mixing, which means using different
languages to convey thoughts in social media texts. Our group, with the name of
IUST(username: TAHA), participated at the SemEval-2020 shared task 9 on
Sentiment Analysis for Code-Mixed Social Media Text, and we have attempted to
develop a system to predict the sentiment of a given code-mixed tweet. We used
different preprocessing techniques and proposed to use different methods that
vary from NBSVM to more complicated deep neural network models. Our best
performing method obtains an F1 score of 0.751 for the Spanish-English sub-task
and 0.706 over the Hindi-English sub-task.
- Abstract(参考訳): 感情分析は自然言語処理のよく研究された分野である。
しかし、ソーシャルメディアの急速な成長とノイズの多いコンテンツは、この問題を確立された方法やツールで解決する上で大きな課題となっている。
これらの課題のひとつは、さまざまな言語を使ってソーシャルメディアのテキストに思考を伝える、code-mixingだ。
iust (username: taha) という名称のグループは、コード混合ソーシャルメディアテキストの感情分析に関する semeval-2020 shared task 9 に参加し、特定のコード混合ツイートの感情を予測するシステムの開発を試みた。
我々は,様々な前処理手法を用い,nbsvmからより複雑な深層ニューラルネットワークモデルへ異なる手法を適用することを提案した。
提案手法では,スペイン英語サブタスクでは0.751点,ヒンズー英語サブタスクでは0.706点を得る。
関連論文リスト
- A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - Transformer-based Model for Word Level Language Identification in
Code-mixed Kannada-English Texts [55.41644538483948]
コードミキシングしたカンナダ英語テキストにおける単語レベル言語識別のためのトランスフォーマーベースモデルを提案する。
The proposed model on the CoLI-Kenglish dataset achieves a weighted F1-score of 0.84 and a macro F1-score of 0.61。
論文 参考訳(メタデータ) (2022-11-26T02:39:19Z) - NLP-CIC at SemEval-2020 Task 9: Analysing sentiment in code-switching
language using a simple deep-learning classifier [63.137661897716555]
コードスイッチングは、2つ以上の言語が同じメッセージで使用される現象である。
標準的な畳み込みニューラルネットワークモデルを用いて、スペイン語と英語の混在するツイートの感情を予測する。
論文 参考訳(メタデータ) (2020-09-07T19:57:09Z) - UPB at SemEval-2020 Task 9: Identifying Sentiment in Code-Mixed Social
Media Texts using Transformers and Multi-Task Learning [1.7196613099537055]
本研究チームは,SemEval-2020 Task 9のために開発したシステムについて述べる。
私たちは、ヒンディー語とスペイン語の2つのよく知られた混成言語をカバーすることを目指しています。
提案手法は, 平均F1スコアが0.6850であるヒンディー語タスクにおいて, 有望な性能を達成する。
スペイン語と英語のタスクでは、29人中17人として、平均で0.7064のF1スコアを獲得しました。
論文 参考訳(メタデータ) (2020-09-06T17:19:18Z) - LIMSI_UPV at SemEval-2020 Task 9: Recurrent Convolutional Neural Network
for Code-mixed Sentiment Analysis [8.8561720398658]
本稿では,SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media TextにおけるLIMSI UPVチームの参加について述べる。
提案手法はSentiMix Hindi- English subtaskで競合し、Hindi- English code-mixedTweetの感情を予測する問題に対処した。
本稿では,リカレントニューラルネットワークと畳み込みニューラルネットワークを併用して,テキストのセマンティクスをよりよく捉えたリカレント畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-30T13:52:24Z) - C1 at SemEval-2020 Task 9: SentiMix: Sentiment Analysis for Code-Mixed
Social Media Text using Feature Engineering [0.9646922337783134]
本稿では,SemEval-2020 Task 9: SentiMixのコード混合ソーシャルメディアテキストにおける感情分析における特徴工学的アプローチについて述べる。
重み付きF1スコアは、"Hinglish"タスクが0.65、"Spanglish"タスクが0.63となる。
論文 参考訳(メタデータ) (2020-08-09T00:46:26Z) - JUNLP@SemEval-2020 Task 9:Sentiment Analysis of Hindi-English code mixed
data using Grid Search Cross Validation [3.5169472410785367]
私たちは、Code-Mixed Sentiment Analysisのドメインに対する、もっとも有効なソリューションの開発に重点を置いています。
この作業はSemEval-2020 Sentimix Taskへの参加として行われた。
論文 参考訳(メタデータ) (2020-07-24T15:06:48Z) - BAKSA at SemEval-2020 Task 9: Bolstering CNN with Self-Attention for
Sentiment Analysis of Code Mixed Text [4.456122555367167]
本稿では,畳み込みニューラルネット(CNN)と自己注意に基づくLSTMのアンサンブルアーキテクチャを提案する。
我々はヒンディー語(ヒングリッシュ)とスペイン語(スパングリッシュ)のデータセットでそれぞれ0.707と0.725のスコアを得た。
論文 参考訳(メタデータ) (2020-07-21T14:05:51Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。