論文の概要: Modal Uncertainty Estimation via Discrete Latent Representation
- arxiv url: http://arxiv.org/abs/2007.12858v1
- Date: Sat, 25 Jul 2020 05:29:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 00:34:09.009414
- Title: Modal Uncertainty Estimation via Discrete Latent Representation
- Title(参考訳): 離散潜在表現によるモーダル不確かさ推定
- Authors: Di Qiu, Lok Ming Lui
- Abstract要約: 本稿では,インプットとアウトプットの1対1マッピングを,忠実な不確実性対策とともに学習するディープラーニングフレームワークを提案する。
我々のフレームワークは、現在の最先端手法よりもはるかに正確な不確実性推定を実証している。
- 参考スコア(独自算出の注目度): 4.246061945756033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many important problems in the real world don't have unique solutions. It is
thus important for machine learning models to be capable of proposing different
plausible solutions with meaningful probability measures. In this work we
introduce such a deep learning framework that learns the one-to-many mappings
between the inputs and outputs, together with faithful uncertainty measures. We
call our framework {\it modal uncertainty estimation} since we model the
one-to-many mappings to be generated through a set of discrete latent
variables, each representing a latent mode hypothesis that explains the
corresponding type of input-output relationship. The discrete nature of the
latent representations thus allows us to estimate for any input the conditional
probability distribution of the outputs very effectively. Both the discrete
latent space and its uncertainty estimation are jointly learned during
training. We motivate our use of discrete latent space through the multi-modal
posterior collapse problem in current conditional generative models, then
develop the theoretical background, and extensively validate our method on both
synthetic and realistic tasks. Our framework demonstrates significantly more
accurate uncertainty estimation than the current state-of-the-art methods, and
is informative and convenient for practical use.
- Abstract(参考訳): 現実世界の重要な問題の多くは、ユニークな解決策を持っていません。
したがって、機械学習モデルでは、有意義な確率測度で異なる可算解を提案できることが重要である。
本研究では,インプットとアウトプットの1対1マッピングを,忠実な不確実性対策とともに学習する深層学習フレームワークを提案する。
我々は1対1のマッピングを離散的潜在変数の集合を通して生成し、それぞれが対応する入出力関係のタイプを説明する潜在モード仮説を表すので、このフレームワークを「モード不確実性推定」と呼んでいる。
したがって、潜在表現の離散的性質により、出力の条件確率分布を非常に効果的に推定することができる。
離散潜在空間とその不確実性推定は共に訓練中に学習される。
我々は,現在の条件付き生成モデルにおけるマルチモーダル後方崩壊問題を通じて離散的潜在空間の利用を動機付け,理論的な背景を発達させ,合成的および現実的なタスクの両方においてこの手法を広範囲に検証する。
本フレームワークは,現在の最先端手法よりも精度の高い不確実性推定を行い,実用上有用であることを示す。
関連論文リスト
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
画像セグメンテーションの進歩は、ディープラーニングベースのコンピュータビジョンの広い範囲において重要な役割を果たす。
この文脈において不確かさの定量化が広く研究され、モデル無知(認識の不確実性)やデータ曖昧さ(アラート的不確実性)を表現し、不正な意思決定を防ぐことができる。
この研究は、分野の進歩を左右する不確実性の基本概念と様々なタスクへの応用について議論することで、確率的セグメンテーションの包括的概要を提供する。
論文 参考訳(メタデータ) (2024-11-25T13:26:09Z) - Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
本稿では,H"older Divergence (HD)に基づく新しいアルゴリズムを導入し,多視点学習の信頼性を高める。
デンプスター・シェーファー理論を通じて、異なるモダリティからの不確実性の統合により、包括的な結果が生成される。
数学的には、HDは実際のデータ分布とモデルの予測分布の間の距離'をよりよく測定できることを証明している。
論文 参考訳(メタデータ) (2024-10-29T04:29:44Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - It's All in the Mix: Wasserstein Machine Learning with Mixed Features [5.739657897440173]
混合機能問題の解法として,実用的なアルゴリズムを提案する。
提案手法は, 個々の特徴が存在する場合の既存手法を著しく上回りうることを示す。
論文 参考訳(メタデータ) (2023-12-19T15:15:52Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
入力画像にあいまいさが存在する場合、セグメンテーションにおけるデータ独立不確実性(いわゆるアレタリック不確実性)を捉えることに重点を置いている。
本稿では,各専門家ネットワークがアレータティック不確実性の異なるモードを推定する,新しい専門家モデル(MoSE)を提案する。
We developed a Wasserstein-like loss that makes direct minimizes the distribution distance between the MoSE and ground truth annotations。
論文 参考訳(メタデータ) (2022-12-14T16:48:21Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Leveraging Unlabeled Data for Entity-Relation Extraction through
Probabilistic Constraint Satisfaction [54.06292969184476]
シンボリックドメイン知識の存在下でのエンティティ関係抽出の問題を研究する。
本手法では,論理文の正確な意味を捉える意味的損失を用いる。
低データ体制に焦点をあてて、セマンティックな損失がベースラインをはるかに上回ることを示す。
論文 参考訳(メタデータ) (2021-03-20T00:16:29Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。