A Simple and Interpretable Predictive Model for Healthcare
- URL: http://arxiv.org/abs/2007.13351v1
- Date: Mon, 27 Jul 2020 08:13:37 GMT
- Title: A Simple and Interpretable Predictive Model for Healthcare
- Authors: Subhadip Maji, Raghav Bali, Sree Harsha Ankem and Kishore V Ayyadevara
- Abstract summary: Deep learning models are currently dominating most state-of-the-art solutions for disease prediction.
These deep learning models, with trainable parameters running into millions, require huge amounts of compute and data to train and deploy.
We develop a simpler yet interpretable non-deep learning based model for application to EHR data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning based models are currently dominating most state-of-the-art
solutions for disease prediction. Existing works employ RNNs along with
multiple levels of attention mechanisms to provide interpretability. These deep
learning models, with trainable parameters running into millions, require huge
amounts of compute and data to train and deploy. These requirements are
sometimes so huge that they render usage of such models as unfeasible. We
address these challenges by developing a simpler yet interpretable non-deep
learning based model for application to EHR data. We model and showcase our
work's results on the task of predicting first occurrence of a diagnosis, often
overlooked in existing works. We push the capabilities of a tree based model
and come up with a strong baseline for more sophisticated models. Its
performance shows an improvement over deep learning based solutions (both, with
and without the first-occurrence constraint) all the while maintaining
interpretability.
Related papers
- AALF: Almost Always Linear Forecasting [3.336367986372977]
We argue that simple models are good enough most of the time, and forecasting performance can be improved by choosing a Deep Learning method only for certain predictions.
An empirical study on various real-world datasets shows that our selection methodology outperforms state-of-the-art online model selections methods in most cases.
arXiv Detail & Related papers (2024-09-16T10:13:09Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - An Empirical Study of Deep Learning Models for Vulnerability Detection [4.243592852049963]
We surveyed and reproduced 9 state-of-the-art deep learning models on 2 widely used vulnerability detection datasets.
We investigated model capabilities, training data, and model interpretation.
Our findings can help better understand model results, provide guidance on preparing training data, and improve the robustness of the models.
arXiv Detail & Related papers (2022-12-15T19:49:34Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Neural Basis Models for Interpretability [33.51591891812176]
Generalized Additive Models (GAMs) are an inherently interpretable class of models.
We propose an entirely new subfamily of GAMs that utilize basis decomposition of shape functions.
A small number of basis functions are shared among all features, and are learned jointly for a given task.
arXiv Detail & Related papers (2022-05-27T17:31:19Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - What do we expect from Multiple-choice QA Systems? [70.86513724662302]
We consider a top performing model on several Multiple Choice Question Answering (MCQA) datasets.
We evaluate it against a set of expectations one might have from such a model, using a series of zero-information perturbations of the model's inputs.
arXiv Detail & Related papers (2020-11-20T21:27:10Z) - Self-Updating Models with Error Remediation [0.5156484100374059]
We propose a framework, Self-Updating Models with Error Remediation (SUMER), in which a deployed model updates itself as new data becomes available.
A key component of SUMER is the notion of error remediation as self-labeled data can be susceptible to the propagation of errors.
We find that self-updating models (SUMs) generally perform better than models that do not attempt to self-update when presented with additional previously-unseen data.
arXiv Detail & Related papers (2020-05-19T23:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.