Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning
- URL: http://arxiv.org/abs/2406.14009v1
- Date: Thu, 20 Jun 2024 05:51:37 GMT
- Title: Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning
- Authors: Asaf Ben Arie, Malka Gorfine,
- Abstract summary: We provide a valid non-parametric bootstrap method that correctly disentangles data uncertainty from the noise inherent in the adopted optimization algorithm.
The proposed ad-hoc method can be easily integrated into any deep neural network without interfering with the training process.
- Score: 0.36832029288386137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have significantly improved prediction accuracy in various fields, gaining recognition across numerous disciplines. Yet, an aspect of deep learning that remains insufficiently addressed is the assessment of prediction uncertainty. Producing reliable uncertainty estimators could be crucial in practical terms. For instance, predictions associated with a high degree of uncertainty could be sent for further evaluation. Recent works in uncertainty quantification of deep learning predictions, including Bayesian posterior credible intervals and a frequentist confidence-interval estimation, have proven to yield either invalid or overly conservative intervals. Furthermore, there is currently no method for quantifying uncertainty that can accommodate deep neural networks for survival (time-to-event) data that involves right-censored outcomes. In this work, we provide a valid non-parametric bootstrap method that correctly disentangles data uncertainty from the noise inherent in the adopted optimization algorithm, ensuring that the resulting point-wise confidence intervals or the simultaneous confidence bands are accurate (i.e., valid and not overly conservative). The proposed ad-hoc method can be easily integrated into any deep neural network without interfering with the training process. The utility of the proposed approach is illustrated by constructing simultaneous confidence bands for survival curves derived from deep neural networks for survival data with right censoring.
Related papers
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
Supervised masking approaches in the time-frequency domain aim to employ deep neural networks to estimate a multiplicative mask to extract clean speech.
This leads to a single estimate for each input without any guarantees or measures of reliability.
We study the benefits of modeling uncertainty in clean speech estimation.
arXiv Detail & Related papers (2023-05-15T15:55:12Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
We propose a method to estimate the predictive uncertainty based on a single neural network without the need for an ensemble.
We demonstrate that the quality of the uncertainty estimates matches those obtained from deep ensembles.
arXiv Detail & Related papers (2022-11-17T20:13:39Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty.
We develop a novel training algorithm that can lead to more dependable uncertainty estimates, without sacrificing predictive power.
arXiv Detail & Related papers (2022-05-12T05:08:10Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning
to End [18.49954482336334]
We focus on modeling the uncertainty of depth data in depth completion starting from the sparse noisy input all the way to the final prediction.
We propose a novel approach to identify disturbed measurements in the input by learning an input confidence estimator in a self-supervised manner based on the normalized convolutional neural networks (NCNNs)
When we evaluate our approach on the KITTI dataset for depth completion, we outperform all the existing Bayesian Deep Learning approaches in terms of prediction accuracy, quality of the uncertainty measure, and the computational efficiency.
arXiv Detail & Related papers (2020-06-05T10:18:35Z) - Deep Bayesian Gaussian Processes for Uncertainty Estimation in
Electronic Health Records [30.65770563934045]
We merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation.
We show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets.
arXiv Detail & Related papers (2020-03-23T10:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.