論文の概要: Unsupervised Domain Adaptation in the Dissimilarity Space for Person
Re-identification
- arxiv url: http://arxiv.org/abs/2007.13890v1
- Date: Mon, 27 Jul 2020 22:10:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 08:55:44.603893
- Title: Unsupervised Domain Adaptation in the Dissimilarity Space for Person
Re-identification
- Title(参考訳): 個人再識別のための異種空間における教師なし領域適応
- Authors: Djebril Mekhazni, Amran Bhuiyan, George Ekladious and Eric Granger
- Abstract要約: そこで本稿では,ペア距離の整合性を実現するために,D-MMD(Dissimilarity-based Maximum Mean Discrepancy)の新たな損失を提案する。
3つの挑戦的なベンチマークデータセットによる実験結果から、D-MMDの損失は、ソースとドメインの分布がよりよくなるにつれて減少することが示された。
- 参考スコア(独自算出の注目度): 11.045405206338486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification (ReID) remains a challenging task in many real-word
video analytics and surveillance applications, even though state-of-the-art
accuracy has improved considerably with the advent of deep learning (DL) models
trained on large image datasets. Given the shift in distributions that
typically occurs between video data captured from the source and target
domains, and absence of labeled data from the target domain, it is difficult to
adapt a DL model for accurate recognition of target data. We argue that for
pair-wise matchers that rely on metric learning, e.g., Siamese networks for
person ReID, the unsupervised domain adaptation (UDA) objective should consist
in aligning pair-wise dissimilarity between domains, rather than aligning
feature representations. Moreover, dissimilarity representations are more
suitable for designing open-set ReID systems, where identities differ in the
source and target domains. In this paper, we propose a novel
Dissimilarity-based Maximum Mean Discrepancy (D-MMD) loss for aligning
pair-wise distances that can be optimized via gradient descent. From a person
ReID perspective, the evaluation of D-MMD loss is straightforward since the
tracklet information allows to label a distance vector as being either
within-class or between-class. This allows approximating the underlying
distribution of target pair-wise distances for D-MMD loss optimization, and
accordingly align source and target distance distributions. Empirical results
with three challenging benchmark datasets show that the proposed D-MMD loss
decreases as source and domain distributions become more similar. Extensive
experimental evaluation also indicates that UDA methods that rely on the D-MMD
loss can significantly outperform baseline and state-of-the-art UDA methods for
person ReID without the common requirement for data augmentation and/or complex
networks.
- Abstract(参考訳): 個人再識別(ReID)は、大規模な画像データセットでトレーニングされたディープラーニング(DL)モデルの出現により、最先端の精度が大幅に向上したにもかかわらず、多くのリアルタイムビデオ分析および監視アプリケーションにおいて、依然として困難な課題である。
ソースドメインとターゲットドメインからキャプチャされたビデオデータと、ターゲットドメインからのラベル付きデータの欠如との間に発生する分布の変化を考えると、ターゲットデータを正確に認識するためにdlモデルを適用することは困難である。
距離学習に依存するペアワイズマッチング(例えば、人物ReIDのためのシームズネットワーク)の場合、教師なしドメイン適応(UDA)の目的は、特徴表現を整列するのではなく、ドメイン間のペアワイズな相似性を整列することである。
さらに、異種性表現は、ソースドメインとターゲットドメインでアイデンティティが異なるオープンセットのReIDシステムを設計するのにより適している。
本稿では,勾配降下により最適化可能な対方向距離を整合させるための,d-mmd損失法を提案する。
ReIDの観点からは、トラックレット情報により、距離ベクトルをクラス内またはクラス間のいずれかとラベルできるので、D-MMD損失の評価は簡単である。
これにより、d-mmd損失最適化のための対向距離の基底分布を近似することができ、そのためソースとターゲット距離分布を調整できる。
3つの挑戦的なベンチマークデータセットによる実験結果から、D-MMDの損失は、ソースとドメインの分布がよりよくなるにつれて減少することが示された。
また,D-MMDの損失に依存するUDA法は,データ拡張や複雑なネットワークの共通要件を伴わずに,ReIDのベースラインや最先端のUDA法を著しく上回ることを示す。
関連論文リスト
- Two stages domain invariant representation learners solve the large co-variate shift in unsupervised domain adaptation with two dimensional data domains [0.0]
教師なし領域適応(UDA)の最近の発展により、対象データに対する教師なし機械学習(ML)予測が可能になった。
本稿では,ソースとターゲットのギャップをセマンティック中間データで埋める手法を提案する。
また、トレーニングされたモデルと教師なしのターゲットラベリングルールのギャップを測定するための定理を導出する。
論文 参考訳(メタデータ) (2024-12-06T00:46:12Z) - CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D
Object Detection [14.063365469339812]
LiDARベースの3Dオブジェクト検出法は、ソース(またはトレーニング)データ配布の外部のターゲットドメインにうまく一般化しないことが多い。
画像のモダリティから視覚的セマンティックキューを活用する,CMDA (unsupervised domain adaptation) と呼ばれる新しい手法を提案する。
また、自己学習に基づく学習戦略を導入し、モデルが逆向きに訓練され、ドメイン不変の機能を生成する。
論文 参考訳(メタデータ) (2024-03-06T14:12:38Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
ディープラーニングモデルを特定の対象個人に適用することは、難しい表情認識タスクである。
本稿では、FERにおける主観的ドメイン適応のための新しいMSDA手法を提案する。
複数の情報源からの情報を効率的に利用して、ディープFERモデルを単一のターゲット個人に適応させる。
論文 参考訳(メタデータ) (2023-12-09T18:40:37Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
対象領域のデータの性能低下に対応するために、教師なし領域適応(UDA)を提案する。
UDAは、自然言語処理、ビデオ解析、自然言語処理、時系列データ分析、医用画像解析など、有望な成果を上げている。
論文 参考訳(メタデータ) (2022-08-15T20:05:07Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
改良されたアプローチは、深層学習の進歩で大きな成功をもたらしたが、それらは大量の地底深度アノテーションに依存している。
教師なしドメイン適応(UDA)は、教師付き学習の制約を緩和するため、ラベル付きソースデータからラベルなしターゲットデータに知識を転送する。
本稿では,その特徴空間をコンテンツやスタイルコンポーネントに分解することを学ぶための,学習特徴分解 for Adaptation (LFDA) と呼ばれる新しいMDEのためのUDA手法を提案する。
論文 参考訳(メタデータ) (2022-07-30T08:05:35Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
マルチモーダル心臓画像分割のための新しいUDA法を提案する。
提案手法は、逆学習に基づいて、異なる空間におけるソースとターゲットドメイン間のネットワーク特徴を適応する。
本手法はannotated source domainからunannotated target domainへの適応により2つの心データセットで検証した。
論文 参考訳(メタデータ) (2021-03-15T08:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。