Superpixel Based Graph Laplacian Regularization for Sparse Hyperspectral
Unmixing
- URL: http://arxiv.org/abs/2007.14033v2
- Date: Sat, 12 Sep 2020 13:12:49 GMT
- Title: Superpixel Based Graph Laplacian Regularization for Sparse Hyperspectral
Unmixing
- Authors: Taner Ince
- Abstract summary: We use a superpixel segmentation algorithm to extract the homogeneous regions by considering the image boundaries.
We first extract the homogeneous regions, which are called superpixels, then a weighted graph in each superpixel is constructed by selecting $K$-nearest pixels in each superpixel.
The spatial similarity is investigated using graph Laplacian regularization.
- Score: 1.14219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An efficient spatial regularization method using superpixel segmentation and
graph Laplacian regularization is proposed for sparse hyperspectral unmixing
method. Since it is likely to find spectrally similar pixels in a homogeneous
region, we use a superpixel segmentation algorithm to extract the homogeneous
regions by considering the image boundaries. We first extract the homogeneous
regions, which are called superpixels, then a weighted graph in each superpixel
is constructed by selecting $K$-nearest pixels in each superpixel. Each node in
the graph represents the spectrum of a pixel and edges connect the similar
pixels inside the superpixel. The spatial similarity is investigated using
graph Laplacian regularization. Sparsity regularization for abundance matrix is
provided using a weighted sparsity promoting norm. Experimental results on
simulated and real data sets show the superiority of the proposed algorithm
over the well-known algorithms in the literature.
Related papers
- Hierarchical Homogeneity-Based Superpixel Segmentation: Application to Hyperspectral Image Analysis [11.612069983959985]
We propose a multiscale superpixel method that is computationally efficient for processing hyperspectral data.
The proposed hierarchical approach leads to superpixels of variable sizes but with higher spectral homogeneity.
For validation, the proposed homogeneity-based hierarchical method was applied as a preprocessing step in the spectral unmixing and classification tasks.
arXiv Detail & Related papers (2024-07-22T01:20:32Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
Hyperspectral images (HSI) clustering is an important but challenging task.
We first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI.
We then design a superpixel graph contrastive clustering model to learn discriminative superpixel representations.
arXiv Detail & Related papers (2024-03-04T07:40:55Z) - Semi-supervised segmentation of land cover images using nonlinear
canonical correlation analysis with multiple features and t-SNE [1.7000283696243563]
Image segmentation is a clustering task whereby each pixel is assigned a cluster label.
In this work, by resorting to label only a small quantity of pixels, a new semi-supervised segmentation approach is proposed.
The proposed semi-supervised RBF-CCA algorithm has been implemented on several remotely sensed multispectral images.
arXiv Detail & Related papers (2024-01-22T17:56:07Z) - Image Reconstruction using Superpixel Clustering and Tensor Completion [21.088385725444944]
Our method divides the image into several regions that capture important textures or semantics and selects a representative pixel from each region to store.
We propose two smooth tensor completion algorithms that can effectively reconstruct different types of images from the selected pixels.
arXiv Detail & Related papers (2023-05-16T16:00:48Z) - Unsupervised Superpixel Generation using Edge-Sparse Embedding [18.92698251515116]
partitioning an image into superpixels based on the similarity of pixels with respect to features can significantly reduce data complexity and improve subsequent image processing tasks.
We propose a non-convolutional image decoder to reduce the expected number of contrasts and enforce smooth, connected edges in the reconstructed image.
We generate edge-sparse pixel embeddings by encoding additional spatial information into the piece-wise smooth activation maps from the decoder's last hidden layer and use a standard clustering algorithm to extract high quality superpixels.
arXiv Detail & Related papers (2022-11-28T15:55:05Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
This paper proposes a probabilistic deep metric learning framework for hyperspectral image classification.
It aims to predict the category of each pixel for an image captured by hyperspectral sensors.
Our framework can be readily applied to existing hyperspectral image classification methods.
arXiv Detail & Related papers (2022-11-15T17:57:12Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) has several applications in image analysis.
Deep-learning-based SOD methods are among the most effective, but they may miss foreground parts with similar colors.
We introduce a post-processing method, named textitSaliency Enhancement over Superpixel Similarity (SESS)
We demonstrate that SESS can consistently and considerably improve the results of three deep-learning-based SOD methods on five image datasets.
arXiv Detail & Related papers (2021-12-01T17:22:54Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.