Experimental realization of phase-controlled dynamics with hybrid
digital-analog approach
- URL: http://arxiv.org/abs/2007.14076v1
- Date: Tue, 28 Jul 2020 09:06:21 GMT
- Title: Experimental realization of phase-controlled dynamics with hybrid
digital-analog approach
- Authors: Ziyu Tao, Libo Zhang, Xiaole Li, Jingjing Niu, Kai Luo, Kangyuan Yi,
Yuxuan Zhou, Hao Jia, Song Liu, Tongxing Yan, Yuanzhen Chen, Dapeng Yu
- Abstract summary: We use a unique hybrid approach to experimentally perform a quantum simulation of phase-controlled dynamics resulting from a closed-contour interaction (CCI) within certain multi-level systems in superconducting quantum circuits.
We demonstrate a variety of related and interesting phenomena, including phase-controlled chiral dynamics, separation of chiral enantiomers, and a new mechanism to generate entangled states based on CCI.
- Score: 12.037437982127502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum simulation can be implemented in pure digital or analog ways, each
with their pros and cons. By taking advantage of the universality of a digital
route and the efficiency of analog simulation, hybrid digital-analog approaches
can enrich the possibilities for quantum simulation. We use a unique hybrid
approach to experimentally perform a quantum simulation of phase-controlled
dynamics resulting from a closed-contour interaction (CCI) within certain
multi-level systems in superconducting quantum circuits. Due to symmetry
constraints, such systems cannot host an inherent CCI. Nevertheless, by
assembling analog modules corresponding to their natural evolutions and
specially designed digital modules constructed from standard quantum logic
gates, we can bypass such constraints and realize an effective CCI in these
systems. Based on this realization, we demonstrate a variety of related and
interesting phenomena, including phase-controlled chiral dynamics, separation
of chiral enantiomers, and a new mechanism to generate entangled states based
on CCI.
Related papers
- Quantum circuits for digital quantum simulation of nonlocal electron-phonon coupling [0.0]
We propose a digital quantum simulator of a one-dimensional lattice model describing an itinerant fermionic excitation.
A circuit that generates the natural initial (pre-quench) state of this system is presented.
arXiv Detail & Related papers (2024-10-10T17:07:57Z) - Hybrid Stabilizer Matrix Product Operator [44.99833362998488]
We introduce a novel hybrid approach combining tensor network methods with the stabilizer formalism to address the challenges of simulating many-body quantum systems.
We demonstrate the effectiveness of our method through applications to random Clifford T-doped circuits and Random Clifford Floquet Dynamics.
arXiv Detail & Related papers (2024-05-09T18:32:10Z) - Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics [3.2692763046599502]
Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics.
To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed.
arXiv Detail & Related papers (2023-05-04T21:16:35Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Digital quantum simulation of non-perturbative dynamics of open systems
with orthogonal polynomials [0.0]
We propose the use of the Time Evolving Density operator with Orthogonal Polynomials Algorithm (TEDOPA) on a quantum computer.
We show that exponential scalings of computational resources can potentially be avoided for time-evolution simulations of the systems considered in this work.
arXiv Detail & Related papers (2022-03-28T11:16:33Z) - Analog Quantum Simulation of the Dynamics of Open Quantum Systems with
Quantum Dots and Microelectronic Circuits [0.0]
We introduce a setup for the analog quantum simulation of the dynamics of open quantum systems based on semiconductor quantum dots.
The proposal opens a general path for effective quantum dynamics simulations based on semiconductor quantum dots.
arXiv Detail & Related papers (2022-03-23T01:42:19Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Toward simulating quantum field theories with controlled phonon-ion
dynamics: A hybrid analog-digital approach [0.0]
We propose hybrid analog-digital quantum simulations of selected quantum field theories.
On one hand, the semi-digital nature of this proposal offers more flexibility in engineering generic model interactions.
On the other hand, encoding the bosonic fields onto the phonon degrees of freedom of the trapped-ion system allows a more efficient usage of simulator resources.
arXiv Detail & Related papers (2021-04-19T14:35:24Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.