Analog Quantum Simulation of the Dynamics of Open Quantum Systems with
Quantum Dots and Microelectronic Circuits
- URL: http://arxiv.org/abs/2203.12127v2
- Date: Wed, 5 Oct 2022 13:43:00 GMT
- Title: Analog Quantum Simulation of the Dynamics of Open Quantum Systems with
Quantum Dots and Microelectronic Circuits
- Authors: Chang Woo Kim, John M. Nichol, Andrew N. Jordan, Ignacio Franco
- Abstract summary: We introduce a setup for the analog quantum simulation of the dynamics of open quantum systems based on semiconductor quantum dots.
The proposal opens a general path for effective quantum dynamics simulations based on semiconductor quantum dots.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a general setup for the analog quantum simulation of the
dynamics of open quantum systems based on semiconductor quantum dots
electrically connected to a chain of quantum $RLC$ electronic circuits. The
dots are chosen to be in the regime of spin-charge hybridization to enhance
their sensitivity to the $RLC$ circuits while mitigating the detrimental
effects of unwanted noise. In this context, we establish an experimentally
realizable map between the hybrid system and a qubit coupled to thermal
harmonic environments of arbitrary complexity that enables the analog quantum
simulation of open quantum systems. We assess the utility of the simulator by
numerically exact emulations that indicate that the experimental setup can
faithfully mimic the intended target even in the presence of its natural
inherent noise. We further provide a detailed analysis of the physical
requirements on the quantum dots and the $RLC$ circuits needed to
experimentally realize this proposal that indicates that the simulator can be
created with existing technology. The approach can exactly capture the effects
of highly structured non-Markovian quantum environments typical of
photosynthesis and chemical dynamics, and offer clear potential advantages over
conventional and even quantum computation. The proposal opens a general path
for effective quantum dynamics simulations based on semiconductor quantum dots.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Adaptively partitioned analog quantum simulation on near-term quantum
computers: The nonclassical free-induction decay of NV centers in diamond [0.24475591916185496]
We propose an alternative analog simulation approach on near-term quantum devices.
Our approach circumvents the limitations by adaptively partitioning the bath into several groups.
This work sheds light on a flexible approach to simulate large-scale materials on noisy near-term quantum computers.
arXiv Detail & Related papers (2023-03-03T14:39:48Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.