Optimized sideband cooling with initial system correlations in
non-Markovian regime
- URL: http://arxiv.org/abs/2007.14094v2
- Date: Thu, 23 Nov 2023 07:43:16 GMT
- Title: Optimized sideband cooling with initial system correlations in
non-Markovian regime
- Authors: Wen-Zhao Zhang, Ting Tan, Jie Zhao, Wenlin Li, and Jiong Cheng
- Abstract summary: We study the evolution of phonon number by incorporating the effects of initial correlations into the Heisenberg equation.
Our results show that the instantaneous phonon number can be significantly reduced by introducing either the parametric-amplification type or the beam-splitter type initial correlations.
- Score: 1.8767214564678356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An optimized sideband cooling in the presence of initial system correlations
is investigated for a standard optomechanical system coupled to a general
mechanical non-Markovian reservoir. We study the evolution of phonon number by
incorporating the effects of initial correlations into the time-dependent
coefficients in the Heisenberg equation. We introduce the concept of cooling
rate and define an average phonon reduction function to describe the sideband
cooling effect in non-Markovian regime. Our results show that the instantaneous
phonon number can be significantly reduced by introducing either the
parametric-amplification type or the beam-splitter type initial correlations.
In addition, the ground state cooling rate can be accelerated by enhancing the
initial correlation of beam-splitter type. By optimizing the initial state of
the system and utilizing Q-modulation technology, a stable mechanical ground
state can be obtained in a very short time. Our optimized cooling protocol
provides an appealing platform for phonon manipulation and quantum information
processing in solid-state systems.
Related papers
- Classical-quantum correspondence in the noise-based dissipative systems [5.207420796114437]
We investigate the correspondence between classical noise and quantum environments.
We construct the so-called central spin model with its couplings fluctuating as the classical noise.
By adjusting the number of the auxiliary systems and their initial states, the noise-based model reproduces both Markovian and non-Markovian evolutions.
arXiv Detail & Related papers (2024-08-07T04:43:19Z) - Efficient Quantum Cooling Algorithm for Fermionic Systems [0.0]
We present a cooling algorithm for ground state preparation of fermionic Hamiltonians.
We derive suitable interaction Hamiltonians that originate from operators of the free theory.
We propose a spectroscopic scan to find the relevant eigenenergies of the system.
arXiv Detail & Related papers (2024-03-21T15:59:32Z) - Correlations and energy in mediated dynamics [50.220421906597416]
We study the time required to maximally entangle two principal systems interacting under the same energy constraints.
Direct interactions are proved to provide the fastest way to entangle the principal systems, but it turns out that there exist mediated dynamics that are just as fast.
The final message is that correlations save energy: one has to supply extra energy if maximal entanglement across the principal systems is to be obtained as fast as with an initially correlated mediator.
arXiv Detail & Related papers (2022-08-30T14:49:08Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Thermal rectification through a nonlinear quantum resonator [0.0]
We identify necessary conditions to observe thermal rectification in a low-dimensional quantum system.
We show how the Lamb shift can be exploited to enhance rectification.
We find that the strong coupling regime allows us to violate the bounds derived in the weak-coupling regime.
arXiv Detail & Related papers (2021-01-26T11:55:24Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Exactly Thermalised Quantum Dynamics of the Spin-Boson Model coupled to
a Dissipative Environment [0.0]
We describe the dynamics of an exactly thermalised open quantum system coupled to a non-Markovian harmonic environment.
We develop a number of competing ESLN variants designed to reduce the numerical divergence of the trace of the open system density matrix.
We consider evolution under a fixed Hamiltonian and show that the system either remains in, or approaches, the correct canonical equilibrium state at long times.
arXiv Detail & Related papers (2020-02-18T16:30:14Z) - Ground-state cooling enabled by critical coupling and dark entangled
states [0.0]
We find optimal cooling occurs when the phonon mode is critically coupled to the two-level system ensemble.
Our results provide a new avenue for ground-state cooling and should be accessible for experimental demonstrations.
arXiv Detail & Related papers (2020-01-05T21:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.