Thermal rectification through a nonlinear quantum resonator
- URL: http://arxiv.org/abs/2101.10732v2
- Date: Wed, 5 May 2021 00:39:38 GMT
- Title: Thermal rectification through a nonlinear quantum resonator
- Authors: Bibek Bhandari, Paolo Andrea Erdman, Rosario Fazio, Elisabetta
Paladino and Fabio Taddei
- Abstract summary: We identify necessary conditions to observe thermal rectification in a low-dimensional quantum system.
We show how the Lamb shift can be exploited to enhance rectification.
We find that the strong coupling regime allows us to violate the bounds derived in the weak-coupling regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comprehensive and systematic study of thermal rectification in a
prototypical low-dimensional quantum system -- a non-linear resonator: we
identify necessary conditions to observe thermal rectification and we discuss
strategies to maximize it. We focus, in particular, on the case where
anharmonicity is very strong and the system reduces to a qubit. In the latter
case, we derive general upper bounds on rectification which hold in the weak
system-bath coupling regime, and we show how the Lamb shift can be exploited to
enhance rectification. We then go beyond the weak-coupling regime by employing
different methods: i) including co-tunneling processes, ii) using the
non-equilibrium Green's function formalism and iii) using the Feynman-Vernon
path integral approach. We find that the strong coupling regime allows us to
violate the bounds derived in the weak-coupling regime, providing us with clear
signatures of high order coherent processes visible in the thermal
rectification. In the general case, where many levels participate to the system
dynamics, we compare the heat rectification calculated with the equation of
motion method and with a mean-field approximation. We find that the former
method predicts, for a small or intermediate anharmonicity, a larger
rectification coefficient.
Related papers
- Third quantization with Hartree approximation for open-system bosonic transport [49.1574468325115]
We present a self-consistent formalism for solving the open-system bosonic Lindblad equation with weak interactions in the steady state.
The method allows us to characterize and predict large-system behavior of quantum transport in interacting bosonic systems relevant to cold-atom experiments.
arXiv Detail & Related papers (2024-08-23T15:50:48Z) - Nonequilibrium quantum heat transport between structured environments [0.0]
We apply the hierarchical equations of motion technique to analyze nonequilibrium heat transport in a spin-boson type model.
We find the heat current to be drastically modified at weak system-bath coupling.
Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems.
arXiv Detail & Related papers (2024-03-20T18:20:12Z) - A Lindblad master equation capable of describing hybrid quantum systems
in the ultra-strong coupling regime [0.0]
We show an approach that can describe the dynamics of hybrid quantum systems in any regime of interaction for an arbitrary electromagnetic (EM) environment.
We extend a previous method developed for few-mode quantization of arbitrary systems to the case of ultrastrong light-matter coupling.
We show that it outperforms current state-of-the-art master equations for a simple model system, and then study a realistic nanoplasmonic setup where existing approaches cannot be applied.
arXiv Detail & Related papers (2023-05-22T15:59:53Z) - Signatures of Dissipation Driven Quantum Phase Transition in Rabi Model [0.0]
We investigate the equilibrium properties and relaxation features of the dissipative quantum Rabi model.
We show that, in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless quantum phase transition occurs by varying the coupling strength.
arXiv Detail & Related papers (2022-05-23T18:13:10Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Hybrid discrete-continuous truncated Wigner approximation for driven,
dissipative spin systems [0.0]
We present a systematic approach for the treatment of many-body dynamics of interacting, open spin systems.
Our approach overcomes some of the shortcomings of the recently developed discrete truncated Wigner approximation (DTWA)
We show that the continuous embedding allows for a straightforward extension of the method to open spin systems subject to dephasing, losses and incoherent drive.
arXiv Detail & Related papers (2022-03-31T15:40:18Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Strong coupling effects in quantum thermal transport with the reaction
coordinate method [0.0]
We present a semi-analytical approach for studying quantum thermal energy transport beyond the weak system-bath coupling regime.
In our technique, applied to the nonequilibrium spin-boson model, a collective coordinate is extracted from each environment and added into the system to construct an enlarged system.
We demonstrate that we properly capture strong system-bath signatures such as the turnover behavior of the heat current as a function of system-bath coupling strength.
arXiv Detail & Related papers (2021-03-09T19:15:56Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.