A Review on Computational Intelligence Techniques in Cloud and Edge
Computing
- URL: http://arxiv.org/abs/2007.14215v1
- Date: Mon, 27 Jul 2020 09:29:21 GMT
- Title: A Review on Computational Intelligence Techniques in Cloud and Edge
Computing
- Authors: Muhammad Asim, Yong Wang, Kezhi Wang, and Pei-Qiu Huang
- Abstract summary: Cloud computing (CC) is a centralized computing paradigm that accumulates resources provides these resources to users through Internet.
Centrally distributed computing (EC) provides resources in a decentralized manner, which can respond to users' needs faster.
As both CC and EC are resource-sensitive, several big issues arise, such as how to conduct job scheduling, resource allocation, and task offloading.
- Score: 14.610305602165415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud computing (CC) is a centralized computing paradigm that accumulates
resources centrally and provides these resources to users through Internet.
Although CC holds a large number of resources, it may not be acceptable by
real-time mobile applications, as it is usually far away from users
geographically. On the other hand, edge computing (EC), which distributes
resources to the network edge, enjoys increasing popularity in the applications
with low-latency and high-reliability requirements. EC provides resources in a
decentralized manner, which can respond to users' requirements faster than the
normal CC, but with limited computing capacities. As both CC and EC are
resource-sensitive, several big issues arise, such as how to conduct job
scheduling, resource allocation, and task offloading, which significantly
influence the performance of the whole system. To tackle these issues, many
optimization problems have been formulated. These optimization problems usually
have complex properties, such as non-convexity and NP-hardness, which may not
be addressed by the traditional convex optimization-based solutions.
Computational intelligence (CI), consisting of a set of nature-inspired
computational approaches, recently exhibits great potential in addressing these
optimization problems in CC and EC. This paper provides an overview of research
problems in CC and EC and recent progresses in addressing them with the help of
CI techniques. Informative discussions and future research trends are also
presented, with the aim of offering insights to the readers and motivating new
research directions.
Related papers
- Hypergame Theory for Decentralized Resource Allocation in Multi-user Semantic Communications [60.63472821600567]
A novel framework for decentralized computing and communication resource allocation in multiuser SC systems is proposed.
The challenge of efficiently allocating communication and computing resources is addressed through the application of Stackelberg hyper game theory.
Simulation results show that the proposed Stackelberg hyper game results in efficient usage of communication and computing resources.
arXiv Detail & Related papers (2024-09-26T15:55:59Z) - A Survey on Integrated Sensing, Communication, and Computation [57.6762830152638]
The forthcoming generation of wireless technology, 6G, promises a revolutionary leap beyond traditional data-centric services.
It aims to usher in an era of ubiquitous intelligent services, where everything is interconnected and intelligent.
Existing techniques like integrated communication and computation (ICC), integrated sensing and computation (ISC), and integrated sensing and communication (ISAC) have made partial strides in addressing this challenge.
This paper begins with a comprehensive survey of historic and related techniques such as ICC, ISC, and ISAC, highlighting their strengths and limitations.
It then explores the state-of-the-art signal designs for
arXiv Detail & Related papers (2024-08-15T11:01:35Z) - Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
Task offloading is a potential solution to satisfy the strict requirements of latencysensitive vehicular applications due to the limited onboard computing resources.
We propose a creative structural knowledge-driven meta-learning (SKDML) method, involving both the model-based AM algorithm and neural networks.
arXiv Detail & Related papers (2024-02-25T03:31:59Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
We propose a new definition of Age of Information (AoI) and, based on the redefined AoI, we formulate an online AoI problem for MEC systems.
We introduce Post-Decision States (PDSs) to exploit the partial knowledge of the system's dynamics.
We also combine PDSs with deep RL to further improve the algorithm's applicability, scalability, and robustness.
arXiv Detail & Related papers (2023-12-01T01:30:49Z) - Double Deep Q-Learning-based Path Selection and Service Placement for
Latency-Sensitive Beyond 5G Applications [11.864695986880347]
This paper studies the joint problem of communication and computing resource allocation, dubbed CCRA, to minimize total cost.
We formulate the problem as a non-linear programming model and propose two approaches, dubbed B&B-CCRA and WF-CCRA, based on the Branch & Bound and Water-Filling algorithms.
Numerical simulations show that B&B-CCRA optimally solves the problem, whereas WF-CCRA delivers near-optimal solutions in a substantially shorter time.
arXiv Detail & Related papers (2023-09-18T22:17:23Z) - Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs [64.26714148634228]
congestion control (CC) algorithms become extremely difficult to design.
It is currently not possible to deploy AI models on network devices due to their limited computational capabilities.
We build a computationally-light solution based on a recent reinforcement learning CC algorithm.
arXiv Detail & Related papers (2022-07-05T20:42:24Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
5G beyond is an end-edge-cloud orchestrated network that can exploit heterogeneous capabilities of the end devices, edge servers, and the cloud.
In multi user wireless networks, diverse application requirements and the possibility of various radio access modes for communication among devices make it challenging to design an optimal computation offloading scheme.
Deep Reinforcement Learning (DRL) is an emerging technique to address such an issue with limited and less accurate network information.
arXiv Detail & Related papers (2020-11-17T05:51:03Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z) - Joint Multi-User DNN Partitioning and Computational Resource Allocation
for Collaborative Edge Intelligence [21.55340197267767]
Mobile Edge Computing (MEC) has emerged as a promising supporting architecture providing a variety of resources to the network edge.
With the assistance of edge servers, user equipments (UEs) are able to run deep neural network (DNN) based AI applications.
We propose an algorithm called Iterative Alternating Optimization (IAO) that can achieve the optimal solution in time.
arXiv Detail & Related papers (2020-07-15T09:40:13Z) - Multi-agent Reinforcement Learning for Resource Allocation in IoT
networks with Edge Computing [16.129649374251088]
It's challenging for end users to offload computation due to their massive requirements on spectrum and resources.
In this paper, we investigate offloading mechanism with resource allocation in IoT edge computing networks by formulating it as a game.
arXiv Detail & Related papers (2020-04-05T20:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.