Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments
- URL: http://arxiv.org/abs/2411.05346v1
- Date: Fri, 08 Nov 2024 05:58:09 GMT
- Title: Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments
- Authors: Pochun Li, Yuyang Xiao, Jinghua Yan, Xuan Li, Xiaoye Wang,
- Abstract summary: This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning.
By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization.
This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption.
- Score: 8.315191578007857
- License:
- Abstract: This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning. In modern computing environments, characterized by increasing data volumes, task complexity, and dynamic workloads, traditional static scheduling methods such as Round-Robin and Priority Scheduling fail to meet the demands of efficient resource allocation and real-time adaptability. By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization. Through extensive experiments, the superiority of the proposed approach is demonstrated in both task completion time and resource utilization, outperforming traditional and dynamic resource allocation (DRA) algorithms. These findings are critical as they highlight the potential of intelligent scheduling algorithms based on reinforcement learning to address the growing complexity and unpredictability of computing environments. This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption. The broad applicability of this approach makes it a promising candidate for next-generation computing frameworks, such as edge computing, cloud computing, and the Internet of Things.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Enhancing Kubernetes Automated Scheduling with Deep Learning and Reinforcement Techniques for Large-Scale Cloud Computing Optimization [2.546966753840083]
This paper proposes an automatic task scheduling scheme based on deep learning and reinforcement learning.
The paper verifies the effectiveness and performance advantages of the proposed scheme in experiments.
arXiv Detail & Related papers (2024-02-26T13:12:44Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Review of Deep Reinforcement Learning in Serverless Computing:
Function Scheduling and Resource Auto-Scaling [2.0722667822370386]
This paper presents a comprehensive review of the application of Deep Reinforcement Learning (DRL) techniques in serverless computing.
A systematic review of recent studies applying DRL to serverless computing is presented, covering various algorithms, models, and performances.
Our analysis reveals that DRL, with its ability to learn and adapt from an environment, shows promising results in improving the efficiency of function scheduling and resource scaling.
arXiv Detail & Related papers (2023-10-05T09:26:04Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Fast Context Adaptation in Cost-Aware Continual Learning [10.515324071327903]
5G and Beyond networks require more complex learning agents and the learning process itself might end up competing with users for communication and computational resources.
This creates friction: on the one hand, the learning process needs resources to quickly convergence to an effective strategy; on the other hand, the learning process needs to be efficient, i.e. take as few resources as possible from the user's data plane, so as not to throttle users' resources.
In this paper, we propose a dynamic strategy to balance the resources assigned to the data plane and those reserved for learning.
arXiv Detail & Related papers (2023-06-06T17:46:48Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
In this paper, we propose a reinforcement learning approach to solve a realistic scheduling problem.
We apply it to an algorithm commonly executed in the high performance computing community, the Cholesky factorization.
Our algorithm uses graph neural networks in combination with an actor-critic algorithm (A2C) to build an adaptive representation of the problem on the fly.
arXiv Detail & Related papers (2020-11-09T10:57:21Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.