Radars for Autonomous Driving: A Review of Deep Learning Methods and
Challenges
- URL: http://arxiv.org/abs/2306.09304v3
- Date: Wed, 27 Sep 2023 22:05:40 GMT
- Title: Radars for Autonomous Driving: A Review of Deep Learning Methods and
Challenges
- Authors: Arvind Srivastav and Soumyajit Mandal
- Abstract summary: Radar is a key component of the suite of perception sensors used for autonomous vehicles.
It is characterized by low resolution, sparsity, clutter, high uncertainty, and lack of good datasets.
Current radar models are often influenced by lidar and vision models, which are focused on optical features that are relatively weak in radar data.
- Score: 0.021665899581403605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radar is a key component of the suite of perception sensors used for safe and
reliable navigation of autonomous vehicles. Its unique capabilities include
high-resolution velocity imaging, detection of agents in occlusion and over
long ranges, and robust performance in adverse weather conditions. However, the
usage of radar data presents some challenges: it is characterized by low
resolution, sparsity, clutter, high uncertainty, and lack of good datasets.
These challenges have limited radar deep learning research. As a result,
current radar models are often influenced by lidar and vision models, which are
focused on optical features that are relatively weak in radar data, thus
resulting in under-utilization of radar's capabilities and diminishing its
contribution to autonomous perception. This review seeks to encourage further
deep learning research on autonomous radar data by 1) identifying key research
themes, and 2) offering a comprehensive overview of current opportunities and
challenges in the field. Topics covered include early and late fusion,
occupancy flow estimation, uncertainty modeling, and multipath detection. The
paper also discusses radar fundamentals and data representation, presents a
curated list of recent radar datasets, and reviews state-of-the-art lidar and
vision models relevant for radar research. For a summary of the paper and more
results, visit the website: autonomous-radars.github.io.
Related papers
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review [9.68427762815025]
Review focuses on exploring different radar data representations utilized in autonomous driving systems.
We introduce the capabilities and limitations of the radar sensor.
For each radar representation, we examine the related datasets, methods, advantages and limitations.
arXiv Detail & Related papers (2023-12-08T06:31:19Z) - Bootstrapping Autonomous Driving Radars with Self-Supervised Learning [13.13679517730015]
Training radar models is hindered by the cost and difficulty of annotating large-scale radar data.
We propose a self-supervised learning framework to leverage the large amount of unlabeled radar data to pre-train radar-only embeddings for self-driving perception tasks.
When used for downstream object detection, we demonstrate that the proposed self-supervision framework can improve the accuracy of state-of-the-art supervised baselines by $5.8%$ in mAP.
arXiv Detail & Related papers (2023-12-07T18:38:39Z) - TransRadar: Adaptive-Directional Transformer for Real-Time Multi-View
Radar Semantic Segmentation [21.72892413572166]
We propose a novel approach to the semantic segmentation of radar scenes using a multi-input fusion of radar data.
Our method, TransRadar, outperforms state-of-the-art methods on the CARRADA and RADIal datasets.
arXiv Detail & Related papers (2023-10-03T17:59:05Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.