Entropy production dynamics in quench protocols of a driven-dissipative
critical system
- URL: http://arxiv.org/abs/2007.14445v2
- Date: Mon, 21 Dec 2020 10:36:26 GMT
- Title: Entropy production dynamics in quench protocols of a driven-dissipative
critical system
- Authors: Bruno O. Goes, Gabriel T. Landi
- Abstract summary: We study the dynamics of the entropy production rate in a quench scenario of the Kerr model.
The entropy production can be split into two contributions, one being extensive with the drive and describing classical irreversibility.
The latter, in particular, is found to reveal the high degree of non-adiabaticity, for quenches between different metastable states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven-dissipative phase transitions are currently a topic of intense
research due to the prospect of experimental realizations in quantum optical
setups. The most paradigmatic model presenting such a transition is the Kerr
model, which predicts the phenomenon of optical bistability, where the system
may relax to two different steady-states for the same driving condition. These
states, however, are inherently out-of-equilibrium and are thus characterized
by the continuous production of irreversible entropy, a key quantifier in
thermodynamics. In this paper we study the dynamics of the entropy production
rate in a quench scenario of the Kerr model, where the external pump is
abruptly changed. This is accomplished using a recently developed formalism,
based on the Husimi $Q$-function, which is particularly tailored for
driven-dissipative and non-Gaussian bosonic systems [Phys. Rev. Res. 2, 013136
(2020)]. Within this framework the entropy production can be split into two
contributions, one being extensive with the drive and describing classical
irreversibility, and the other being intensive and directly related to quantum
fluctuations. The latter, in particular, is found to reveal the high degree of
non-adiabaticity, for quenches between different metastable states.
Related papers
- Prethermalization in the PXP Model under Continuous Quasiperiodic Driving [0.0]
We investigate the dynamics of a quasiperiodically driven Rydberg atom chain in the strong Rydberg blockage regime.
Even without driving, the PXP model exhibits many-body scarring and resultant persistent oscillations.
Our results demonstrate that continuous quasi-periodic drive protocols can provide a promising route to realize prethermal phases of matter.
arXiv Detail & Related papers (2024-06-03T15:30:02Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Reaction-diffusive dynamics of number-conserving dissipative quantum
state preparation [0.0]
We show the emergence of a diffusive regime for the particle and hole density modes at intermediate length- and time-scales.
We also identify processes that limit the diffusive behavior of this mode at the longest length- and time-scales.
Strikingly, we find that these processes lead to a reaction-diffusion dynamics governed by the Fisher-Kolmogorov-Petrovsky-Piskunov equation.
arXiv Detail & Related papers (2023-01-12T19:11:04Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Irreversibility mitigation in unital non-Markovian quantum evolutions [5.8010446129208155]
We study the behavior of the entropy production in open quantum systems undergoing unital non-Markovian dynamics.
Although the dynamics of the system is irreversible, our result may be interpreted as a transient tendency towards reversibility.
arXiv Detail & Related papers (2020-04-09T16:04:27Z) - Wehrl entropy production rate across a dynamical quantum phase
transition [0.0]
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo.
We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations.
The small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo.
arXiv Detail & Related papers (2020-04-02T16:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.