Reaction-diffusive dynamics of number-conserving dissipative quantum
state preparation
- URL: http://arxiv.org/abs/2301.05258v3
- Date: Sun, 28 May 2023 04:15:42 GMT
- Title: Reaction-diffusive dynamics of number-conserving dissipative quantum
state preparation
- Authors: P. A. Nosov, D. S. Shapiro, M. Goldstein, I. S. Burmistrov
- Abstract summary: We show the emergence of a diffusive regime for the particle and hole density modes at intermediate length- and time-scales.
We also identify processes that limit the diffusive behavior of this mode at the longest length- and time-scales.
Strikingly, we find that these processes lead to a reaction-diffusion dynamics governed by the Fisher-Kolmogorov-Petrovsky-Piskunov equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The use of dissipation for the controlled creation of nontrivial quantum
many-body correlated states is of much fundamental and practical interest. What
is the result of imposing number conservation, which, in closed system, gives
rise to diffusive spreading? We investigate this question for a paradigmatic
model of a two-band system, with dissipative dynamics aiming to empty one band
and to populate the other, which had been introduced before for the dissipative
stabilization of topological states. Going beyond the mean-field treatment of
the dissipative dynamics, we demonstrate the emergence of a diffusive regime
for the particle and hole density modes at intermediate length- and
time-scales, which, interestingly, can only be excited in nonlinear response to
external fields. We also identify processes that limit the diffusive behavior
of this mode at the longest length- and time-scales. Strikingly, we find that
these processes lead to a reaction-diffusion dynamics governed by the
Fisher-Kolmogorov-Petrovsky-Piskunov equation, making the designed dark state
unstable towards a state with a finite particle and hole density.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Anomalous relaxation of density waves in a ring-exchange system [0.0]
We present the analysis of the slowing down exhibited by dynamics of a ring-exchange model on a square lattice.
We find the preservation of coarse-grained memory of initial state of density-wave types for unexpectedly long times.
We argue that its slow melting plays a crucial role in the slowing-down mechanism.
arXiv Detail & Related papers (2022-11-30T07:00:11Z) - Different routes to the classical limit of backflow [0.0]
This work is to analyze the backflow effect in the light of the underlying intrinsic decoherence and the dissipative dynamics.
In all the cases treated here, backflow is gradually suppressed as the intrinsic decoherence process is developing.
arXiv Detail & Related papers (2022-11-16T17:18:09Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Noninteracting fermionic systems with localized losses: Exact results in
the hydrodynamic limit [0.0]
We investigate the interplay between unitary dynamics after a quantum quench and localized dissipation in a noninteracting fermionic chain.
In particular, we consider the effect of gain and loss processes, for which fermions are added and removed incoherently.
For strong dissipation the coherent dynamics of the system is arrested, which is a manifestation of the celebrated quantum Zeno effect.
arXiv Detail & Related papers (2021-03-09T19:16:31Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Entropy production dynamics in quench protocols of a driven-dissipative
critical system [0.0]
We study the dynamics of the entropy production rate in a quench scenario of the Kerr model.
The entropy production can be split into two contributions, one being extensive with the drive and describing classical irreversibility.
The latter, in particular, is found to reveal the high degree of non-adiabaticity, for quenches between different metastable states.
arXiv Detail & Related papers (2020-07-28T19:30:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.