論文の概要: Surrogate Locally-Interpretable Models with Supervised Machine Learning
Algorithms
- arxiv url: http://arxiv.org/abs/2007.14528v1
- Date: Tue, 28 Jul 2020 23:46:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 01:44:00.070841
- Title: Surrogate Locally-Interpretable Models with Supervised Machine Learning
Algorithms
- Title(参考訳): 教師付き機械学習アルゴリズムを用いた局所解釈モデル
- Authors: Linwei Hu, Jie Chen, Vijayan N. Nair, Agus Sudjianto
- Abstract要約: 近年,従来の統計的手法よりも予測性能が優れているため,機械学習アルゴリズムが普及している。
主な焦点は解釈可能性であり、結果として得られるサロゲートモデルは、合理的に優れた予測性能を持つ。
- 参考スコア(独自算出の注目度): 8.949704905866888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised Machine Learning (SML) algorithms, such as Gradient Boosting,
Random Forest, and Neural Networks, have become popular in recent years due to
their superior predictive performance over traditional statistical methods.
However, their complexity makes the results hard to interpret without
additional tools. There has been a lot of recent work in developing global and
local diagnostics for interpreting SML models. In this paper, we propose a
locally-interpretable model that takes the fitted ML response surface,
partitions the predictor space using model-based regression trees, and fits
interpretable main-effects models at each of the nodes. We adapt the algorithm
to be efficient in dealing with high-dimensional predictors. While the main
focus is on interpretability, the resulting surrogate model also has reasonably
good predictive performance.
- Abstract(参考訳): Gradient Boosting、Random Forest、Neural NetworksといったSML(Supervised Machine Learning)アルゴリズムは、従来の統計手法よりも優れた予測性能のために近年人気を集めている。
しかし、その複雑さにより、追加のツールなしで結果の解釈が困難になる。
SMLモデルを解釈するためのグローバルおよびローカル診断システムの開発には、近年多くの研究がなされている。
本稿では,ML応答面を適合させ,モデルベース回帰木を用いて予測空間を分割し,各ノードに主効果モデルを適合させる局所解釈可能なモデルを提案する。
このアルゴリズムは高次元予測器の処理に有効である。
主な焦点は解釈可能性であるが、結果として得られる代理モデルは、合理的に優れた予測性能を持つ。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Achieving interpretable machine learning by functional decomposition of black-box models into explainable predictor effects [4.3500439062103435]
ブラックボックス予測の関数分解のための新しい手法を提案する。
加法回帰モデルと同様に,本手法は主特徴量の方向と強度に関する洞察を与える。
論文 参考訳(メタデータ) (2024-07-26T10:37:29Z) - Observational Scaling Laws and the Predictability of Language Model Performance [51.2336010244645]
本稿では、モデルトレーニングを回避し、100のパブリックモデルからスケーリング法則を構築する観察的アプローチを提案する。
いくつかの創発現象が滑らかでシグモダルな挙動を辿り、小さなモデルから予測可能であることを示す。
言語モデル機能の改善が進むにつれて、Chain-of-ThoughtやSelf-Consistencyといったポストトレーニング介入の影響を予測する方法を示す。
論文 参考訳(メタデータ) (2024-05-17T17:49:44Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z) - Tree-based local explanations of machine learning model predictions,
AraucanaXAI [2.9660372210786563]
パフォーマンスと知性の間のトレードオフは、特に医学のような高度な応用において、しばしば直面する。
本稿では,ジェネリックMLモデルの予測に関する説明を生成するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-15T17:39:19Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。