論文の概要: Hessian-based toolbox for reliable and interpretable machine learning in
physics
- arxiv url: http://arxiv.org/abs/2108.02154v1
- Date: Wed, 4 Aug 2021 16:32:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-19 22:34:43.892122
- Title: Hessian-based toolbox for reliable and interpretable machine learning in
physics
- Title(参考訳): 物理学における信頼性と解釈可能な機械学習のためのヘッセン系ツールボックス
- Authors: Anna Dawid, Patrick Huembeli, Micha{\l} Tomza, Maciej Lewenstein,
Alexandre Dauphin
- Abstract要約: 本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) techniques applied to quantum many-body physics have
emerged as a new research field. While the numerical power of this approach is
undeniable, the most expressive ML algorithms, such as neural networks, are
black boxes: The user does neither know the logic behind the model predictions
nor the uncertainty of the model predictions. In this work, we present a
toolbox for interpretability and reliability, agnostic of the model
architecture. In particular, it provides a notion of the influence of the input
data on the prediction at a given test point, an estimation of the uncertainty
of the model predictions, and an extrapolation score for the model predictions.
Such a toolbox only requires a single computation of the Hessian of the
training loss function. Our work opens the road to the systematic use of
interpretability and reliability methods in ML applied to physics and, more
generally, science.
- Abstract(参考訳): 量子多体物理学に応用された機械学習(ML)技術が新しい研究分野として登場した。
このアプローチの数値的なパワーは決定できないが、ニューラルネットワークのような最も表現力のあるMLアルゴリズムはブラックボックスである。
本稿では,モデルアーキテクチャに依存しない解釈性と信頼性のためのツールボックスを提案する。
特に、入力データが所定の試験点における予測に及ぼす影響、モデル予測の不確実性の推定、モデル予測のための外挿スコアの概念を提供する。
このようなツールボックスは、トレーニング損失関数のhessianの単一の計算のみを必要とする。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的な利用への道を開く。
関連論文リスト
- Hypothesis Testing and Machine Learning: Interpreting Variable Effects
in Deep Artificial Neural Networks using Cohen's f2 [0.0]
深層人工ニューラルネットワークは多くの分野において高い予測性能を示す。
しかし、統計的推測をする余裕はなく、ブラックボックスの操作は人間が理解するには複雑すぎる。
本稿では、現在のXAI手法を拡張し、機械学習のためのモデルに依存しない仮説テストフレームワークを開発する。
論文 参考訳(メタデータ) (2023-02-02T20:43:37Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Interpretable models for extrapolation in scientific machine learning [0.0]
複雑な機械学習アルゴリズムは、補間的設定において単純な回帰よりも優れていることが多い。
本稿では, モデル性能と解釈可能性のトレードオフを, 幅広い科学・工学的問題にまたがって検討する。
論文 参考訳(メタデータ) (2022-12-16T19:33:28Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - An Explainable Regression Framework for Predicting Remaining Useful Life
of Machines [6.374451442486538]
本稿では,機械の残留実用寿命(RUL)予測のための説明可能な回帰フレームワークを提案する。
また、古典的およびニューラルネットワーク(NN)に基づくタスクのためのソリューションを含む機械学習(ML)アルゴリズムを評価した。
論文 参考訳(メタデータ) (2022-04-28T15:44:12Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
本研究では,概念的水文モデルのプロセス理解と最先端MLモデルの予測能力を組み合わせた物理インフォームド機械学習(PIML)モデルを開発する。
提案したモデルを用いて,インドのナルマダ川流域における目標(流れ流)と中間変数(実際の蒸発吸引)の月次時間系列を予測する。
論文 参考訳(メタデータ) (2021-04-22T12:13:42Z) - A Causal Lens for Peeking into Black Box Predictive Models: Predictive
Model Interpretation via Causal Attribution [3.3758186776249928]
予測モデルがブラックボックスであるような設定でこの問題に対処することを目指している。
我々は、ブラックボックス予測モデルをモデル出力に対する各モデル入力の因果効果を推定する問題と比較する。
モデル入力に対するモデル出力に対する責任の因果関係が、予測モデルを解釈し、その予測を説明するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-08-01T23:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。