Convergence analysis of online algorithms for vector-valued kernel regression
- URL: http://arxiv.org/abs/2309.07779v3
- Date: Mon, 30 Jun 2025 13:42:05 GMT
- Title: Convergence analysis of online algorithms for vector-valued kernel regression
- Authors: Michael Griebel, Peter Oswald,
- Abstract summary: We consider the problem of approximating the regression function $f_mu:, Omega to Y$ from noisy $mu$-distributed vector-valued data.<n>We provide estimates for the expected squared error in the RKHS norm of the approximations $f(m)in H$ obtained by a standard regularized online approximation algorithm.
- Score: 0.42970700836450487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of approximating the regression function $f_\mu:\, \Omega \to Y$ from noisy $\mu$-distributed vector-valued data $(\omega_m,y_m)\in\Omega\times Y$ by an online learning algorithm using a reproducing kernel Hilbert space $H$ (RKHS) as prior. In an online algorithm, i.i.d. samples become available one by one via a random process and are successively processed to build approximations to the regression function. Assuming that the regression function essentially belongs to $H$ (soft learning scenario), we provide estimates for the expected squared error in the RKHS norm of the approximations $f^{(m)}\in H$ obtained by a standard regularized online approximation algorithm. In particular, we show an order-optimal estimate $$ \mathbb{E}(\|\epsilon^{(m)}\|_H^2)\le C (m+1)^{-s/(2+s)},\qquad m=1,2,\ldots, $$ where $\epsilon^{(m)}$ denotes the error term after $m$ processed data, the parameter $0<s\leq 1$ expresses an additional smoothness assumption on the regression function, and the constant $C$ depends on the variance of the input noise, the smoothness of the regression function, and other parameters of the algorithm. The proof, which is inspired by results on Schwarz iterative methods in the noiseless case, uses only elementary Hilbert space techniques and minimal assumptions on the noise, the feature map that defines $H$ and the associated covariance operator.
Related papers
- Robust learning of halfspaces under log-concave marginals [6.852292115526837]
We give an algorithm that learns linear threshold functions and returns a classifier with boundary volume $O(r+varepsilon)$ at radius perturbation $r$.<n>The time and sample complexity of $dtildeO (1/varepsilon2)$ matches the complexity of Boolean regression.
arXiv Detail & Related papers (2025-05-19T20:12:16Z) - Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update [62.96781471194877]
Two principled strategies for handling heavy-tailed noise, truncation and median-of-means, have been introduced to heavy-tailed bandits.<n>We propose a emphone-pass algorithm based on the online mirror descent framework.
arXiv Detail & Related papers (2025-03-01T09:41:45Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
We derive approximation bounds for learning single neuron models using thresholded descent.
We also study the linear regression problem, where $sigma(mathbfx) = mathbfx$.
arXiv Detail & Related papers (2024-09-05T16:59:56Z) - Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
This paper aims to recover the intrinsic model parameters given the leverage scores gradient.
We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$.
arXiv Detail & Related papers (2024-08-21T01:39:42Z) - Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data [17.657917523817243]
We develop and analyze algorithms for instrumental variable regression by viewing the problem as a conditional optimization problem.
In the context of least-squares instrumental variable regression, our algorithms neither require matrix inversions nor mini-batches.
We derive rates of convergence in expectation, that are of order $mathcalO(log T/T)$ and $mathcalO (1/T1-iota)$ for any $iota>0$.
arXiv Detail & Related papers (2024-05-29T19:21:55Z) - Online and Offline Robust Multivariate Linear Regression [0.3277163122167433]
We introduce two methods each considered contrast: (i) online gradient descent algorithms and their averaged versions and (ii) offline fix-point algorithms.
Because the variance matrix of the noise is usually unknown, we propose to plug a robust estimate of it in the Mahalanobis-based gradient descent algorithms.
arXiv Detail & Related papers (2024-04-30T12:30:48Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Distribution-Independent Regression for Generalized Linear Models with
Oblivious Corruptions [49.69852011882769]
We show the first algorithms for the problem of regression for generalized linear models (GLMs) in the presence of additive oblivious noise.
We present an algorithm that tackles newthis problem in its most general distribution-independent setting.
This is the first newalgorithmic result for GLM regression newwith oblivious noise which can handle more than half the samples being arbitrarily corrupted.
arXiv Detail & Related papers (2023-09-20T21:41:59Z) - On the Linear Convergence of Policy Gradient under Hadamard
Parameterization [4.182089296199263]
We study the convergence of deterministic policy gradient under the Hadamard parameterization.
We show that the error decreases at an $O(frac1k)$ rate for all the iterations.
arXiv Detail & Related papers (2023-05-31T05:51:15Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - A gradient estimator via L1-randomization for online zero-order
optimization with two point feedback [93.57603470949266]
We present a novel gradient estimator based on two function evaluation and randomization.
We consider two types of assumptions on the noise of the zero-order oracle: canceling noise and adversarial noise.
We provide an anytime and completely data-driven algorithm, which is adaptive to all parameters of the problem.
arXiv Detail & Related papers (2022-05-27T11:23:57Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Fast and Robust Online Inference with Stochastic Gradient Descent via
Random Scaling [0.9806910643086042]
We develop a new method of online inference for a vector of parameters estimated by the Polyak-Rtupper averaging procedure of gradient descent algorithms.
Our approach is fully operational with online data and is rigorously underpinned by a functional central limit theorem.
arXiv Detail & Related papers (2021-06-06T15:38:37Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
We derive the regret upper bounds on the classes of Sobolev spaces $W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$.
The upper bounds are supported by the minimax regret analysis, which reveals that in the cases $beta> fracd2$ or $p=infty$ these rates are (essentially) optimal.
arXiv Detail & Related papers (2021-02-06T15:05:14Z) - Accelerating Optimization and Reinforcement Learning with
Quasi-Stochastic Approximation [2.294014185517203]
This paper sets out to extend convergence theory to quasi-stochastic approximations.
It is illustrated with applications to gradient-free optimization and policy gradient algorithms for reinforcement learning.
arXiv Detail & Related papers (2020-09-30T04:44:45Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
In truncated linear regression, $(A_i, y_i)_i$ whose dependent variable equals $y_i= A_irm T cdot x* + eta_i$ is some fixed unknown vector of interest.
The goal is to recover $x*$ under some favorable conditions on the $A_i$'s and the noise distribution.
We prove that there exists a computationally and statistically efficient method for recovering $k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated samples.
arXiv Detail & Related papers (2020-07-29T00:31:34Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.