論文の概要: Ergodicity of the underdamped mean-field Langevin dynamics
- arxiv url: http://arxiv.org/abs/2007.14660v2
- Date: Fri, 1 Apr 2022 10:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 20:01:15.952156
- Title: Ergodicity of the underdamped mean-field Langevin dynamics
- Title(参考訳): 弱減衰平均場ランジュバンダイナミクスのエルゴード性
- Authors: Anna Kazeykina, Zhenjie Ren, Xiaolu Tan, Junjian Yang
- Abstract要約: 平均場ランゲヴィン方程式(MFL)の長期挙動について検討した。
GAN(Generative Adversarial Network)を学習するアルゴリズムの数値的な例を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the long time behavior of an underdamped mean-field Langevin (MFL)
equation, and provide a general convergence as well as an exponential
convergence rate result under different conditions. The results on the MFL
equation can be applied to study the convergence of the Hamiltonian gradient
descent algorithm for the overparametrized optimization. We then provide a
numerical example of the algorithm to train a generative adversarial networks
(GAN).
- Abstract(参考訳): 本研究では, アンダーダムド平均場ランゲヴィン(MFL)方程式の長期挙動について検討し, 一般収束と, 異なる条件下での指数収束率を求める。
mfl方程式の結果は、過パラメータ最適化のためのハミルトン勾配降下アルゴリズムの収束を研究するために応用できる。
次に,gan(generative adversarial networks)を訓練するアルゴリズムの数値例を示す。
関連論文リスト
- Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
平均場ランゲヴィンのダイナミクスを、対称で証明可能な収束した更新で、初めて確率分布に対する最小の最適化に拡張する。
また,時間と粒子の離散化機構について検討し,カオス結果の新たな均一時間伝播を証明した。
論文 参考訳(メタデータ) (2023-12-02T13:01:29Z) - Proximal Algorithms for Accelerated Langevin Dynamics [57.08271964961975]
我々は,確率化Nesterovスキームに基づくMCMCアルゴリズムの新たなクラスを開発する。
統計処理と画像処理の異なるモデルに対して,Langevinサンプルよりも提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-11-24T19:56:01Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
平均場ランゲヴィンダイナミクス(英: mean-field Langevin dynamics、MFLD)は、分布依存のドリフトを含むランゲヴィン力学の非線形一般化である。
近年の研究では、MFLDは測度空間で機能するエントロピー規則化された凸関数を地球規模で最小化することが示されている。
有限粒子近似,時間分散,勾配近似による誤差を考慮し,MFLDのカオスの均一時間伝播を示す枠組みを提供する。
論文 参考訳(メタデータ) (2023-06-12T16:28:11Z) - Reweighted Interacting Langevin Diffusions: an Accelerated Sampling
Methodfor Optimization [28.25662317591378]
本稿では, サンプリング手法を高速化し, 難解な最適化問題の解法を提案する。
提案手法は, 後部分布サンプリングとLangevin Dynamicsを用いた最適化の関連性について検討する。
論文 参考訳(メタデータ) (2023-01-30T03:48:20Z) - Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for
Inverse Problem [97.64313409741614]
ランダム重み付きDNNジェネレータを反転させるため,Langevinアルゴリズムの定常分布を高速に混合し,特徴付ける。
本稿では,事前学習した生成モデルの潜時空間における後部サンプリングを提案する。
論文 参考訳(メタデータ) (2022-06-18T03:47:37Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
平均場ランゲヴィン力学の収束速度解析について述べる。
ダイナミックスに付随する$p_q$により、凸最適化において古典的な結果と平行な収束理論を開発できる。
論文 参考訳(メタデータ) (2022-01-25T17:13:56Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Stochastic Gradient Langevin with Delayed Gradients [29.6870062491741]
本研究では,計算に用いた遅延勾配情報による誤差が測定値の収束率に有意な影響を及ぼさないことを示す。
計算に用いた遅延勾配情報による誤差は, 測定値の収束率に有意な影響を与えず, ウォールクロック時間における高速化の可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-12T17:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。