論文の概要: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis
and Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2007.14994v1
- Date: Wed, 29 Jul 2020 04:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 19:52:22.323874
- Title: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis
and Uncertainty Quantification
- Title(参考訳): 糖尿病網膜症診断と不確実性定量化のためのハイブリッドディープラーニングガウスプロセス
- Authors: Santiago Toledo-Cort\'es, Melissa De La Pava, Oscar Perd\'omo, and
Fabio A. Gonz\'alez
- Abstract要約: 糖尿病網膜症 (Diabetes Mellitus) は糖尿病の微小血管合併症の1つである。
コナールニューラルネットワークに基づく計算モデルは、眼底画像を用いたDRの自動検出技術の現状を表す。
本稿では,DR診断と不確実性定量化のためのハイブリッドディープラーニング・ガウス法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetic Retinopathy (DR) is one of the microvascular complications of
Diabetes Mellitus, which remains as one of the leading causes of blindness
worldwide. Computational models based on Convolutional Neural Networks
represent the state of the art for the automatic detection of DR using eye
fundus images. Most of the current work address this problem as a binary
classification task. However, including the grade estimation and quantification
of predictions uncertainty can potentially increase the robustness of the
model. In this paper, a hybrid Deep Learning-Gaussian process method for DR
diagnosis and uncertainty quantification is presented. This method combines the
representational power of deep learning, with the ability to generalize from
small datasets of Gaussian process models. The results show that uncertainty
quantification in the predictions improves the interpretability of the method
as a diagnostic support tool. The source code to replicate the experiments is
publicly available at https://github.com/stoledoc/DLGP-DR-Diagnosis.
- Abstract(参考訳): 糖尿病網膜症(英: Diabetic Retinopathy, DR)は、糖尿病の微小血管合併症の1つである。
畳み込みニューラルネットワークに基づく計算モデルは、眼底画像を用いたdrの自動検出のための技術状態を表す。
現在の作業のほとんどは、この問題をバイナリ分類タスクとして扱っている。
しかし、予測のグレード推定と定量化を含む不確実性は、モデルの堅牢性を高める可能性がある。
本稿では,dr診断と不確実性定量化のためのハイブリッド深層学習・ゲージ処理法を提案する。
この方法は、ディープラーニングの表現力と、ガウス過程モデルの小さなデータセットから一般化する能力を組み合わせる。
その結果,予測の不確実性定量化は診断支援ツールとしての手法の解釈可能性を向上させることが示された。
実験を再現するソースコードはhttps://github.com/stoledoc/DLGP-DR-Diagnosisで公開されている。
関連論文リスト
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
糖尿病網膜症分類における分布や領域の特定にモデルを一般化する問題について検討した。
本稿では、視覚変換器の自己蒸留を実現するための、シンプルで効果的な領域一般化(DG)手法を提案する。
本稿では,オープンソースのDR分類データセット上での最先端DG手法の性能について報告する。
論文 参考訳(メタデータ) (2023-10-26T09:11:55Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Blindness (Diabetic Retinopathy) Severity Scale Detection [0.0]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病の重篤な合併症である。
DRのタイムリーな診断と治療は、視力の喪失を避けるために重要である。
本稿では,網膜基底画像の自動スクリーニングのための新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-04T11:31:15Z) - FEDI: Few-shot learning based on Earth Mover's Distance algorithm
combined with deep residual network to identify diabetic retinopathy [3.6623193507510012]
本稿では,Earth Moverのアルゴリズムをベースとした,糖尿病網膜症の診断支援を目的とした深部残像ネットワークの複数ショット学習モデルを提案する。
我々は,1000サンプルデータの39カテゴリに基づいて,数ショット学習のためのトレーニングと検証の分類タスクを構築し,深層残留ネットワークを訓練し,経験的事前学習モデルを得る。
事前学習モデルの重みに基づいて、Earth MoverのDistanceアルゴリズムは画像間の距離を計算し、画像間の類似性を求め、モデルのパラメータを変更してトレーニングモデルの精度を向上させる。
論文 参考訳(メタデータ) (2021-08-22T13:05:02Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
既存のCNNモデルはブラックボックスとして機能し、医師が重要な診断機能がモデルによって使用されることを保証しない。
ここでは,マルチタスクと敵の損失を両立させる不確実性に基づく重み付けの組み合わせをエンド・ツー・エンドで学習することにより,病理的特徴に焦点を合わせることを推奨する。
AUC 0.89 (0.01) がベースラインであるAUC 0.86 (0.005) に対して最も高い値を示した。
論文 参考訳(メタデータ) (2020-08-04T12:10:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。