論文の概要: VR-FuseNet: A Fusion of Heterogeneous Fundus Data and Explainable Deep Network for Diabetic Retinopathy Classification
- arxiv url: http://arxiv.org/abs/2504.21464v1
- Date: Wed, 30 Apr 2025 09:38:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 19:29:14.919556
- Title: VR-FuseNet: A Fusion of Heterogeneous Fundus Data and Explainable Deep Network for Diabetic Retinopathy Classification
- Title(参考訳): VR-FuseNet:糖尿病網膜症分類のための不均一基盤データと説明可能なディープネットワークの融合
- Authors: Shamim Rahim Refat, Ziyan Shirin Raha, Shuvashis Sarker, Faika Fairuj Preotee, MD. Musfikur Rahman, Tashreef Muhammad, Mohammad Shafiul Islam,
- Abstract要約: 本稿では,VR-FuseNetと呼ばれる新しいハイブリッドディープラーニングモデルを提案することによって,糖尿病網膜症自動検出のための包括的アプローチを提案する。
提案したVR-FuseNetモデルは、最先端の畳み込みニューラルネットワークであるVGG19と、その深い階層的特徴抽出で知られるResNet50V2の強みを組み合わせたものだ。
このモデルは、糖尿病網膜症分類タスクにおけるハイブリッド特徴抽出の有効性を示すすべてのパフォーマンス指標において、個々のアーキテクチャよりも優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic retinopathy is a severe eye condition caused by diabetes where the retinal blood vessels get damaged and can lead to vision loss and blindness if not treated. Early and accurate detection is key to intervention and stopping the disease progressing. For addressing this disease properly, this paper presents a comprehensive approach for automated diabetic retinopathy detection by proposing a new hybrid deep learning model called VR-FuseNet. Diabetic retinopathy is a major eye disease and leading cause of blindness especially among diabetic patients so accurate and efficient automated detection methods are required. To address the limitations of existing methods including dataset imbalance, diversity and generalization issues this paper presents a hybrid dataset created from five publicly available diabetic retinopathy datasets. Essential preprocessing techniques such as SMOTE for class balancing and CLAHE for image enhancement are applied systematically to the dataset to improve the robustness and generalizability of the dataset. The proposed VR-FuseNet model combines the strengths of two state-of-the-art convolutional neural networks, VGG19 which captures fine-grained spatial features and ResNet50V2 which is known for its deep hierarchical feature extraction. This fusion improves the diagnostic performance and achieves an accuracy of 91.824%. The model outperforms individual architectures on all performance metrics demonstrating the effectiveness of hybrid feature extraction in Diabetic Retinopathy classification tasks. To make the proposed model more clinically useful and interpretable this paper incorporates multiple XAI techniques. These techniques generate visual explanations that clearly indicate the retinal features affecting the model's prediction such as microaneurysms, hemorrhages and exudates so that clinicians can interpret and validate.
- Abstract(参考訳): 糖尿病網膜症 (diabetic retinopathy) は糖尿病によって引き起こされる重症眼疾患で、網膜血管が損傷し、治療を受けなければ視力喪失や失明を引き起こす。
早期かつ正確な検出は、疾患の進行を阻止し、介入する鍵となる。
そこで本研究では,VR-FuseNetと呼ばれる新しいハイブリッドディープラーニングモデルを提案することにより,糖尿病網膜症自動検出のための包括的アプローチを提案する。
糖尿病網膜症は主要な眼疾患であり、特に糖尿病患者の盲目の原因となるため、正確かつ効率的な自動検出方法が必要である。
本稿では,5つの糖尿病網膜症データセットから作成したハイブリッドデータセットについて,データセットの不均衡,多様性,一般化といった既存手法の限界に対処する。
クラスバランスのためのSMOTEや画像強調のためのCLAHEといった基本的な前処理技術は、データセットの堅牢性と一般化性を改善するために、データセットに体系的に適用される。
提案したVR-FuseNetモデルは、最先端の畳み込みニューラルネットワークであるVGG19と、その深い階層的特徴抽出で知られるResNet50V2の強みを組み合わせたものだ。
この融合は診断性能を改善し、91.824%の精度を達成する。
このモデルは、糖尿病網膜症分類タスクにおけるハイブリッド特徴抽出の有効性を示すすべてのパフォーマンス指標において、個々のアーキテクチャよりも優れている。
本論文は,複数のXAI技術を応用し,臨床的に有用かつ解釈可能なモデルを提案する。
これらの技術は、微小動脈瘤、出血、排尿などのモデルの予測に影響を及ぼす網膜の特徴を明確に示し、臨床医が解釈し、検証できるように、視覚的な説明を生成する。
関連論文リスト
- Fine-tuning Vision Language Models with Graph-based Knowledge for Explainable Medical Image Analysis [44.38638601819933]
現在の糖尿病網膜症(DR)のステージングモデルはほとんど解釈できない。
本稿では,グラフ表現学習を視覚言語モデル(VLM)と統合し,説明可能なDR診断を実現する手法を提案する。
論文 参考訳(メタデータ) (2025-03-12T20:19:07Z) - Interpretable Retinal Disease Prediction Using Biology-Informed Heterogeneous Graph Representations [40.8160960729546]
解釈可能性は、医療診断のための機械学習モデルの信頼性を高めるために不可欠である。
本研究では,確立した機械学習モデルの性能を超える手法を提案する。
論文 参考訳(メタデータ) (2025-02-23T19:27:47Z) - Diabetic Retinopathy Detection Using CNN with Residual Block with DCGAN [0.0]
糖尿病網膜症(英: Diabetic Retinopathy, DR)は、糖尿病による網膜血管の損傷による視覚障害の主要な原因である。
本研究では,残差ブロック構造を持つ畳み込みニューラルネットワーク(CNN)を用いたDR検出システムを提案する。
論文 参考訳(メタデータ) (2025-01-04T14:48:28Z) - Domain Adaptive Diabetic Retinopathy Grading with Model Absence and Flowing Data [45.75724873443564]
ドメインシフトは、糖尿病網膜症などの臨床応用において重要な課題である。
本稿では,データ中心の観点から適応可能なGUES(Generative Unadversarial Examples)を提案する。
論文 参考訳(メタデータ) (2024-12-02T07:14:25Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
本研究の目的は, 糖尿病網膜症の診断を改善するために, 時間的DR識別のための深層学習モデルを開発することである。
提案モデルでは,早期に網膜画像から様々な病変を検出する。
論文 参考訳(メタデータ) (2023-05-08T14:17:33Z) - A Residual Encoder-Decoder Network for Segmentation of Retinal
Image-Based Exudates in Diabetic Retinopathy Screening [1.8496844821697171]
網膜画像におけるエキダレートのセグメンテーションのための残差スキップ接続を有する畳み込みニューラルネットワークを提案する。
提案するネットワークは,糖尿病網膜症スクリーニングに適応し,高い精度で抽出する。
論文 参考訳(メタデータ) (2022-01-16T04:08:17Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Diabetic Retinopathy Detection using Ensemble Machine Learning [1.2891210250935146]
糖尿病網膜症(Drebetic Retinopathy, DR)は、糖尿病患者の視覚障害の原因となる疾患である。
DRは、網膜に影響を及ぼす微小血管疾患であり、血管の閉塞を引き起こし、網膜組織の主要な栄養源を切断する。
論文 参考訳(メタデータ) (2021-06-22T17:36:08Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading [9.181677987146418]
糖尿病は個人で最も一般的な病気の1つである。
糖尿病網膜症 (DR) は糖尿病の合併症であり、失明を引き起こす可能性がある。
網膜画像に基づくDRグレーディングは、治療計画のための診断と予後に優れた価値を提供する。
論文 参考訳(メタデータ) (2020-10-29T03:48:01Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。