論文の概要: Integrating Machine Learning for Planetary Science: Perspectives for the
Next Decade
- arxiv url: http://arxiv.org/abs/2007.15129v1
- Date: Wed, 29 Jul 2020 21:58:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 21:04:07.903948
- Title: Integrating Machine Learning for Planetary Science: Perspectives for the
Next Decade
- Title(参考訳): 惑星科学のための機械学習の統合:次の10年の展望
- Authors: Abigail R. Azari, John B. Biersteker, Ryan M. Dewey, Gary Doran, Emily
J. Forsberg, Camilla D. K. Harris, Hannah R. Kerner, Katherine A. Skinner,
Andy W. Smith, Rashied Amini, Saverio Cambioni, Victoria Da Poian, Tadhg M.
Garton, Michael D. Himes, Sarah Millholland, Suranga Ruhunusiri
- Abstract要約: 機械学習(ML)メソッドは、大規模なデータセットからインサイトを構築、描画する能力を拡大することができる。
惑星科学におけるデータ豊富な未来を育成するための10の勧告を提案する。
- 参考スコア(独自算出の注目度): 2.625808464178174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) methods can expand our ability to construct, and draw
insight from large datasets. Despite the increasing volume of planetary
observations, our field has seen few applications of ML in comparison to other
sciences. To support these methods, we propose ten recommendations for
bolstering a data-rich future in planetary science.
- Abstract(参考訳): 機械学習(ml)メソッドは、構築能力を拡大し、大規模なデータセットから洞察を引き出すことができます。
惑星観測量の増大にもかかわらず、我々の分野は他の科学と比較してMLの応用例は少ない。
これらの方法を支援するために,惑星科学におけるデータ豊富な未来を育成するための10の勧告を提案する。
関連論文リスト
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
我々は、幅広いシミュレーションから有用な科学的洞察を得るための、新しい、偏見のない、機械学習に基づくアプローチについて説明する。
我々の概念は、低次元空間におけるデータのコンパクトな表現を学習するために非線形次元削減を適用することに基づいている。
本稿では、回転不変な超球面変動畳み込み自己エンコーダを用いて、潜時空間の電力分布を利用して、IllustrisTNGシミュレーションから銀河を訓練したプロトタイプを提案する。
論文 参考訳(メタデータ) (2024-06-06T07:34:58Z) - Reconstructing Atmospheric Parameters of Exoplanets Using Deep Learning [9.735933075230069]
本稿では,マルチモーダルアーキテクチャ内での深層学習と逆モデリング技術を組み合わせて,外惑星からの大気パラメータを抽出する多目的確率回帰手法を提案する。
我々の手法は計算の限界を克服し、以前の手法よりも優れており、惑星外大気の効率的な分析を可能にしている。
論文 参考訳(メタデータ) (2023-10-02T14:16:04Z) - Applications of AI in Astronomy [0.0]
本稿では、天文学、天体物理学、宇宙論における機械学習(ML)およびその他のAI手法の使用の概要について述べる。
過去10年間で、さまざまなML/AI応用を含む天文学文献が指数関数的に成長してきた。
データの複雑さが増し続ければ、協力的な人間とAIの発見につながるさらなる進歩が期待できる。
論文 参考訳(メタデータ) (2022-12-03T00:38:59Z) - Improving aircraft performance using machine learning: a review [57.82442188072833]
本稿では,航空宇宙工学の多分野に影響を及ぼす機械学習(ML)の新たな展開について概説する。
我々は、さまざまな航空宇宙分野にまたがるML手法の利点と課題を整理し、技術の現状を概観する。
論文 参考訳(メタデータ) (2022-10-20T07:16:53Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - GalaxAI: Machine learning toolbox for interpretable analysis of
spacecraft telemetry data [48.42042893355919]
GalaxAIは、宇宙船のテレメトリデータを分析するための汎用的な機械学習ツールボックスである。
多変量時系列解析、分類、回帰、構造化出力予測に様々な機械学習アルゴリズムを使用している。
本稿では,2つの異なる宇宙船に関する2つのユースケースにおいて,GalaxAIの有用性と汎用性を示す。
論文 参考訳(メタデータ) (2021-08-03T10:45:20Z) - First Full-Event Reconstruction from Imaging Atmospheric Cherenkov
Telescope Real Data with Deep Learning [55.41644538483948]
チェレンコフ望遠鏡アレイは、地上のガンマ線天文学の未来である。
地上で作られた最初のプロトタイプ望遠鏡であるLarge Size Telescope 1は現在、最初の科学データを収集している。
我々は、深層畳み込みニューラルネットワークに基づくフルイベント再構築の開発とその実データへの適用を初めて提示する。
論文 参考訳(メタデータ) (2021-05-31T12:51:42Z) - Bridging observation, theory and numerical simulation of the ocean using
Machine Learning [0.08155575318208629]
海洋の研究は、MLが対処できるユニークな課題の組み合わせを示しています。
利用可能な観測データは、ほとんど空間的に希薄であり、表面に限定されており、数十年以上に及ぶ時系列は少ない。
このレビューでは、MLを適用することで提供される現在の科学的洞察と、差し迫った潜在能力の所在を論じる。
論文 参考訳(メタデータ) (2021-04-26T12:11:51Z) - Machine Learning Information Fusion in Earth Observation: A
Comprehensive Review of Methods, Applications and Data Sources [0.0]
本稿では,地球観測における問題に対する機械学習(ML)技術に基づく最も重要な情報融合アルゴリズムについて概説する。
データ駆動アプローチ、特にML技術は、このデータルージュから重要な情報を抽出する自然な選択である。
論文 参考訳(メタデータ) (2020-12-07T13:35:08Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。