論文の概要: Applications of AI in Astronomy
- arxiv url: http://arxiv.org/abs/2212.01493v1
- Date: Sat, 3 Dec 2022 00:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 16:03:35.425880
- Title: Applications of AI in Astronomy
- Title(参考訳): AIの天文学への応用
- Authors: S. G. Djorgovski, A. A. Mahabal, M. J. Graham, K. Polsterer, and A.
Krone-Martins
- Abstract要約: 本稿では、天文学、天体物理学、宇宙論における機械学習(ML)およびその他のAI手法の使用の概要について述べる。
過去10年間で、さまざまなML/AI応用を含む天文学文献が指数関数的に成長してきた。
データの複雑さが増し続ければ、協力的な人間とAIの発見につながるさらなる進歩が期待できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We provide a brief, and inevitably incomplete overview of the use of Machine
Learning (ML) and other AI methods in astronomy, astrophysics, and cosmology.
Astronomy entered the big data era with the first digital sky surveys in the
early 1990s and the resulting Terascale data sets, which required automating of
many data processing and analysis tasks, for example the star-galaxy
separation, with billions of feature vectors in hundreds of dimensions. The
exponential data growth continued, with the rise of synoptic sky surveys and
the Time Domain Astronomy, with the resulting Petascale data streams and the
need for a real-time processing, classification, and decision making. A broad
variety of classification and clustering methods have been applied for these
tasks, and this remains a very active area of research. Over the past decade we
have seen an exponential growth of the astronomical literature involving a
variety of ML/AI applications of an ever increasing complexity and
sophistication. ML and AI are now a standard part of the astronomical toolkit.
As the data complexity continues to increase, we anticipate further advances
leading towards a collaborative human-AI discovery.
- Abstract(参考訳): 我々は、天文学、天体物理学、宇宙論における機械学習(ML)およびその他のAI手法の使用について、簡潔かつ必然的に不完全な概要を提供する。
天文学は1990年代初頭に初めてデジタルスカイサーベイを行い、その結果得られたテラスケールデータセットは、数百次元の何十億もの特徴ベクトルを持つ星-銀河分離のような多くのデータ処理と分析タスクの自動化を必要とした。
指数関数的なデータ増加は、シンオプティカルスカイサーベイと時間領域天文学の台頭とともに続き、ペタスケールのデータストリームとリアルタイム処理、分類、意思決定の必要性が生じた。
これらのタスクには、様々な分類とクラスタリング手法が適用されており、非常に活発な研究分野である。
過去10年間で、さまざまなML/AIアプリケーションを含む天文学文献が指数関数的に増加し、複雑さと洗練が増している。
MLとAIは現在、天文学ツールキットの標準部分となっている。
データの複雑さが増し続ければ、協力的な人間-AI発見へのさらなる進歩が期待できる。
関連論文リスト
- Can AI Understand Our Universe? Test of Fine-Tuning GPT by Astrophysical Data [6.0108108767559525]
ChatGPTはここ数ヶ月で最も話題になっているコンセプトで、プロフェッショナルと一般大衆の両方を魅了している。
本稿では、銀河、クエーサー、星、ガンマ線バースト(GRBs)、ブラックホール(BHs)の観測から得られた天文学データを用いて、生成前訓練変圧器モデル(GPT)を微調整する。
我々は、LLMが科学的研究において証明された有効性を示す試験として、これを成功とみなしている。
論文 参考訳(メタデータ) (2024-04-14T20:52:19Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - Advances on the classification of radio image cubes [4.443085464476228]
現代の電波望遠鏡は、Square Kilometre Array (SKA)のようなシステムのために、毎日エクサバイト規模のデータセットを生成する。
大量データセットは、発見につながる未知の、希少な天体物理学現象の源泉である。
近年、電波天文学における人工知能の利用に焦点を当てた科学出版物が急増している。
論文 参考訳(メタデータ) (2023-05-05T11:15:37Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - Radio astronomical images object detection and segmentation: A benchmark
on deep learning methods [5.058069142315917]
本研究では,電波干渉計による天体画像に適用した,最も肯定的な深層学習手法の性能について検討し,自動音源検出の課題を解決する。
目標は、予測性能と計算効率の観点から既存の技術の概要を、彼らの研究に機械学習を使いたいと考える天体物理学コミュニティの科学者に提供することである。
論文 参考訳(メタデータ) (2023-03-08T10:55:24Z) - Astronomia ex machina: a history, primer, and outlook on neural networks
in astronomy [0.0]
我々は天文学における接続性の進化をその3つの波で追跡した。
我々は、天文学的な応用のために微調整されたGPTライクな基礎モデルの採用を論じる。
論文 参考訳(メタデータ) (2022-11-07T19:00:00Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - GalaxAI: Machine learning toolbox for interpretable analysis of
spacecraft telemetry data [48.42042893355919]
GalaxAIは、宇宙船のテレメトリデータを分析するための汎用的な機械学習ツールボックスである。
多変量時系列解析、分類、回帰、構造化出力予測に様々な機械学習アルゴリズムを使用している。
本稿では,2つの異なる宇宙船に関する2つのユースケースにおいて,GalaxAIの有用性と汎用性を示す。
論文 参考訳(メタデータ) (2021-08-03T10:45:20Z) - Automated identification of transiting exoplanet candidates in NASA
Transiting Exoplanets Survey Satellite (TESS) data with machine learning
methods [1.9491825010518622]
AI/ML ThetaRayシステムは当初ケプラー太陽系外惑星のデータで訓練され、確認された太陽系外惑星で検証される。
TESSミッションで発生したしきい値交差イベント(TCE)の10,803光曲線へのThetaRayの適用により、39の新たな惑星候補が発見された。
論文 参考訳(メタデータ) (2021-02-20T12:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。