論文の概要: The Return of Lexical Dependencies: Neural Lexicalized PCFGs
- arxiv url: http://arxiv.org/abs/2007.15135v1
- Date: Wed, 29 Jul 2020 22:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 19:34:41.820466
- Title: The Return of Lexical Dependencies: Neural Lexicalized PCFGs
- Title(参考訳): 語彙依存の復活:神経語彙化pcfgs
- Authors: Hao Zhu, Yonatan Bisk, Graham Neubig
- Abstract要約: 語彙化PCFGのニューラルモデルを提案する。
実験により、この統一されたフレームワークは、いずれかの形式主義単独で達成されるよりも、両方の表現に対してより強い結果をもたらすことが示された。
- 参考スコア(独自算出の注目度): 103.41187595153652
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper we demonstrate that $\textit{context free grammar (CFG) based
methods for grammar induction benefit from modeling lexical dependencies}$.
This contrasts to the most popular current methods for grammar induction, which
focus on discovering $\textit{either}$ constituents $\textit{or}$ dependencies.
Previous approaches to marry these two disparate syntactic formalisms (e.g.
lexicalized PCFGs) have been plagued by sparsity, making them unsuitable for
unsupervised grammar induction. However, in this work, we present novel neural
models of lexicalized PCFGs which allow us to overcome sparsity problems and
effectively induce both constituents and dependencies within a single model.
Experiments demonstrate that this unified framework results in stronger results
on both representations than achieved when modeling either formalism alone.
Code is available at https://github.com/neulab/neural-lpcfg.
- Abstract(参考訳): 本稿では、語彙依存のモデル化による文法誘導のための$\textit{context free grammar (CFG) に基づく手法を実証する。
これは、最も一般的な文法帰納法とは対照的で、$\textit{either}$ Composinitions $\textit{or}$Dependencyの発見に重点を置いている。
これら2つの異なる構文形式(例えばレキシカル化PCFG)を結婚する以前のアプローチは、スパーシリティに悩まされ、教師なし文法誘導には適さない。
しかし,本研究では,レキシカル化PCFGのニューラルモデルを提案する。
実験により、この統一されたフレームワークは、いずれかの形式だけをモデリングする場合よりも両方の表現に強い結果をもたらすことが示されている。
コードはhttps://github.com/neulab/neural-lpcfgで入手できる。
関連論文リスト
- LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Transparency at the Source: Evaluating and Interpreting Language Models
With Access to the True Distribution [4.01799362940916]
人工的な言語のようなデータを用いて、ニューラルネットワークモデルのトレーニング、評価、解釈を行う。
データは、巨大な自然言語コーパスから派生した巨大な確率文法を用いて生成される。
基礎となる真の情報源にアクセスすることで、異なる単語のクラス間の動的学習における顕著な違いと結果が示される。
論文 参考訳(メタデータ) (2023-10-23T12:03:01Z) - Dependency Induction Through the Lens of Visual Perception [81.91502968815746]
本稿では,単語の具体性を利用した教師なし文法帰納モデルと,構成的視覚に基づく構成的文法を共同学習する手法を提案する。
実験により,提案した拡張は,文法的サイズが小さい場合でも,現在最先端の視覚的接地モデルよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-09-20T18:40:37Z) - Extracting Grammars from a Neural Network Parser for Anomaly Detection
in Unknown Formats [79.6676793507792]
強化学習は、ある未知のフォーマットで文を解析するために、人工知能を訓練する技術として、最近約束されている。
本稿では、ニューラルネットワークから生成規則を抽出し、これらの規則を用いて、ある文が名目か異常かを決定する手順を提案する。
論文 参考訳(メタデータ) (2021-07-30T23:10:24Z) - The Limitations of Limited Context for Constituency Parsing [27.271792317099045]
Shen et al., 2018a)の構文解析アーキテクチャは、教師なし構文解析を最初に行った。
現在の構文に対するニューラルアプローチはどのような構文構造を表現できるのか?
我々は確率論的自由文法(PCFG)のサンドボックスにこの疑問を解いた。
これらのアプローチの表現力の重要な側面は、予測者がアクセス可能なコンテキストの量と方向性である。
論文 参考訳(メタデータ) (2021-06-03T03:58:35Z) - Neural Bi-Lexicalized PCFG Induction [22.728124473130876]
本稿では,L-PCFGをパラメータ化する手法を提案する。
提案手法はビレクシカルな依存関係を直接モデル化し,L-PCFGの学習と表現の複雑さを低減させる。
論文 参考訳(メタデータ) (2021-05-31T15:00:03Z) - Rule Augmented Unsupervised Constituency Parsing [11.775897250472116]
本稿では,構文規則の形で存在する言語について,非常に汎用的な言語知識を活用するアプローチを提案する。
MNLIとWSJという2つのベンチマークデータセットで、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2021-05-21T08:06:11Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - Second-Order Unsupervised Neural Dependency Parsing [52.331561380948564]
ほとんどの教師なし依存は、親子情報のみを考慮した一階確率的生成モデルに基づいている。
親子や兄弟姉妹の情報を組み込んだ教師なし神経依存モデルの2階拡張を提案する。
我々のジョイントモデルは、完全なWSJテストセットにおける前の最先端技術よりも10%改善します。
論文 参考訳(メタデータ) (2020-10-28T03:01:33Z) - Traduction des Grammaires Cat\'egorielles de Lambek dans les Grammaires
Cat\'egorielles Abstraites [0.0]
このインターンシップレポートは、すべてのランベク文法が抽象カテゴリー文法(ACG)で完全にではなく効率的に表現できることを示すものである。
主な考え方は、LGの型書き換えシステムを文脈自由文法(CFG)に変換し、導入規則と除去規則を消去し、カット規則が十分であるように十分な公理を生成することである。
基礎となるアルゴリズムは完全には実装されなかったが、この証明は自然言語処理におけるACGの関連性を支持する別の議論を提供する。
論文 参考訳(メタデータ) (2020-01-23T18:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。