論文の概要: Transparency at the Source: Evaluating and Interpreting Language Models
With Access to the True Distribution
- arxiv url: http://arxiv.org/abs/2310.14840v1
- Date: Mon, 23 Oct 2023 12:03:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 20:27:02.623001
- Title: Transparency at the Source: Evaluating and Interpreting Language Models
With Access to the True Distribution
- Title(参考訳): ソースの透明性 - 真の分布へのアクセスによる言語モデルの評価と解釈
- Authors: Jaap Jumelet, Willem Zuidema
- Abstract要約: 人工的な言語のようなデータを用いて、ニューラルネットワークモデルのトレーニング、評価、解釈を行う。
データは、巨大な自然言語コーパスから派生した巨大な確率文法を用いて生成される。
基礎となる真の情報源にアクセスすることで、異なる単語のクラス間の動的学習における顕著な違いと結果が示される。
- 参考スコア(独自算出の注目度): 4.01799362940916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a setup for training, evaluating and interpreting neural language
models, that uses artificial, language-like data. The data is generated using a
massive probabilistic grammar (based on state-split PCFGs), that is itself
derived from a large natural language corpus, but also provides us complete
control over the generative process. We describe and release both grammar and
corpus, and test for the naturalness of our generated data. This approach
allows us to define closed-form expressions to efficiently compute exact lower
bounds on obtainable perplexity using both causal and masked language
modelling. Our results show striking differences between neural language
modelling architectures and training objectives in how closely they allow
approximating the lower bound on perplexity. Our approach also allows us to
directly compare learned representations to symbolic rules in the underlying
source. We experiment with various techniques for interpreting model behaviour
and learning dynamics. With access to the underlying true source, our results
show striking differences and outcomes in learning dynamics between different
classes of words.
- Abstract(参考訳): 本稿では,人工言語データを用いたニューラルネットワークモデルの学習,評価,解釈のためのセットアップを提案する。
データは,大規模自然言語コーパスから派生した大規模確率文法(状態分割PCFGに基づく)を用いて生成されるが,生成過程の完全な制御も提供する。
文法とコーパスの両方を記述・リリースし、生成したデータの自然性をテストする。
このアプローチにより、因果モデルとマスキング言語モデルの両方を使用して、取得可能なパープレキシティの正確な下限を効率的に計算できるクローズドフォーム式を定義できる。
その結果、ニューラルネットワークのモデリングアーキテクチャとトレーニング対象との間には、パープレキシティの下限の近似がどの程度密にできるかという大きな違いが示されている。
また,提案手法により,学習した表現と根底にあるシンボル規則を直接比較することができる。
モデル動作の解釈と学習力学に関する様々な手法を実験した。
基礎となる真の情報源にアクセスすることで、異なる単語のクラス間の学習のダイナミクスに顕著な違いと結果が示されます。
関連論文リスト
- Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Meta predictive learning model of languages in neural circuits [2.5690340428649328]
本稿では,予測符号化フレームワークにおける平均場学習モデルを提案する。
我々のモデルでは、ほとんどの接続は学習後に決定論的になる。
本モデルは,脳計算,次点予測,一般知能の関連性を調べるための出発点となる。
論文 参考訳(メタデータ) (2023-09-08T03:58:05Z) - Learning an Artificial Language for Knowledge-Sharing in Multilingual
Translation [15.32063273544696]
コードブック内のエントリにエンコーダ状態を割り当てることで,多言語モデルの潜伏空間を識別する。
我々は,現実的なデータ量と領域を用いた大規模実験へのアプローチを検証する。
また、学習した人工言語を用いてモデル行動を分析し、類似のブリッジ言語を使用することで、残りの言語間での知識共有が向上することを発見した。
論文 参考訳(メタデータ) (2022-11-02T17:14:42Z) - Is neural language acquisition similar to natural? A chronological
probing study [0.0515648410037406]
本稿では,MultiBERTやT5といったトランスフォーマー英語モデルの時系列探索について述べる。
コーパスの学習過程において,モデルが学習した言語に関する情報を比較した。
その結果,1)訓練の初期段階に言語情報を取得すること,2)両言語モデルが様々な言語レベルから様々な特徴を捉える能力を示した。
論文 参考訳(メタデータ) (2022-07-01T17:24:11Z) - Linking Emergent and Natural Languages via Corpus Transfer [98.98724497178247]
創発言語と自然言語のコーパス転送によるリンクを確立する新しい方法を提案する。
このアプローチでは,言語モデリングとイメージキャプションという,2つの異なるタスクに対して,非自明な転送メリットを示す。
また,同一画像に基づく自然言語キャプションに創発的メッセージを翻訳することで,創発的言語の伝達可能性を予測する新しい指標を提案する。
論文 参考訳(メタデータ) (2022-03-24T21:24:54Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Implicit Representations of Meaning in Neural Language Models [31.71898809435222]
会話を通して進化する実体や状況のモデルとして機能する文脈表現を同定する。
その結果,事前学習されたニューラルネットワークモデルにおける予測は,少なくとも部分的には,意味の動的表現と実体状態の暗黙的なシミュレーションによって支持されていることが示唆された。
論文 参考訳(メタデータ) (2021-06-01T19:23:20Z) - Unnatural Language Inference [48.45003475966808]
我々は、RoBERTaやBARTのような最先端のNLIモデルは、ランダムに並べ替えられた単語の例に不変であり、時にはよりよく機能することさえあります。
我々の発見は、自然言語理解モデルと、その進捗を測定するために使われるタスクが、本当に人間のような構文理解を必要とするという考えに疑問を投げかけている。
論文 参考訳(メタデータ) (2020-12-30T20:40:48Z) - Reprogramming Language Models for Molecular Representation Learning [65.00999660425731]
本稿では,分子学習タスクのための事前学習言語モデルに対して,辞書学習(R2DL)による表現再プログラミングを提案する。
対比プログラムは、k-SVDソルバを用いて、高密度ソースモデル入力空間(言語データ)とスパースターゲットモデル入力空間(例えば、化学および生物学的分子データ)との間の線形変換を学習する。
R2DLは、ドメイン固有のデータに基づいて訓練されたアート毒性予測モデルの状態によって確立されたベースラインを達成し、限られたトレーニングデータ設定でベースラインを上回る。
論文 参考訳(メタデータ) (2020-12-07T05:50:27Z) - Learning Music Helps You Read: Using Transfer to Study Linguistic
Structure in Language Models [27.91397366776451]
遅延構造(MIDI音楽またはJavaコード)上でのLSTMのトレーニングは、自然言語でのテストパフォーマンスを改善する。
語彙重なりに制御される自然言語間の移動実験により,試験言語におけるゼロショット性能は,訓練言語とタイプ的類似性に強く相関していることが示された。
論文 参考訳(メタデータ) (2020-04-30T06:24:03Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。