Searching Collaborative Agents for Multi-plane Localization in 3D
Ultrasound
- URL: http://arxiv.org/abs/2007.15273v1
- Date: Thu, 30 Jul 2020 07:23:55 GMT
- Title: Searching Collaborative Agents for Multi-plane Localization in 3D
Ultrasound
- Authors: Yuhao Huang, Xin Yang, Rui Li, Jikuan Qian, Xiaoqiong Huang, Wenlong
Shi, Haoran Dou, Chaoyu Chen, Yuanji Zhang, Huanjia Luo, Alejandro Frangi, Yi
Xiong, Dong Ni
- Abstract summary: 3D ultrasound (US) is widely used due to its rich diagnostic information, portability and low cost.
Standard plane (SP) localization in US volume not only improves efficiency and reduces user-dependence, but also boosts 3D US interpretation.
We propose a novel Multi-Agent Reinforcement Learning framework to localize multiple uterine SPs in 3D US simultaneously.
- Score: 59.97366727654676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D ultrasound (US) is widely used due to its rich diagnostic information,
portability and low cost. Automated standard plane (SP) localization in US
volume not only improves efficiency and reduces user-dependence, but also
boosts 3D US interpretation. In this study, we propose a novel Multi-Agent
Reinforcement Learning (MARL) framework to localize multiple uterine SPs in 3D
US simultaneously. Our contribution is two-fold. First, we equip the MARL with
a one-shot neural architecture search (NAS) module to obtain the optimal agent
for each plane. Specifically, Gradient-based search using Differentiable
Architecture Sampler (GDAS) is employed to accelerate and stabilize the
training process. Second, we propose a novel collaborative strategy to
strengthen agents' communication. Our strategy uses recurrent neural network
(RNN) to learn the spatial relationship among SPs effectively. Extensively
validated on a large dataset, our approach achieves the accuracy of 7.05
degree/2.21mm, 8.62 degree/2.36mm and 5.93 degree/0.89mm for the mid-sagittal,
transverse and coronal plane localization, respectively. The proposed MARL
framework can significantly increase the plane localization accuracy and reduce
the computational cost and model size.
Related papers
- Anatomical 3D Style Transfer Enabling Efficient Federated Learning with Extremely Low Communication Costs [1.3654846342364306]
We propose a novel federated learning (FL) approach that utilizes 3D style transfer for the multi-organ segmentation task.
By mixing styles based on these clusters, it preserves the anatomical information and leads models to learn intra-organ diversity.
Experiments indicate that our method can maintain its accuracy even in cases where the communication cost is highly limited.
arXiv Detail & Related papers (2024-10-26T07:00:40Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Active search and coverage using point-cloud reinforcement learning [50.741409008225766]
This paper presents an end-to-end deep reinforcement learning solution for target search and coverage.
We show that deep hierarchical feature learning works for RL and that by using farthest point sampling (FPS) we can reduce the amount of points.
We also show that multi-head attention for point-clouds helps to learn the agent faster but converges to the same outcome.
arXiv Detail & Related papers (2023-12-18T18:16:30Z) - Agent with Tangent-based Formulation and Anatomical Perception for
Standard Plane Localization in 3D Ultrasound [56.7645826576439]
We introduce a novel reinforcement learning framework for automatic SP localization in 3D US.
First, we formulate SP localization in 3D US as a tangent-point-based problem in RL to restructure the action space.
Second, we design an auxiliary task learning strategy to enhance the model's ability to recognize subtle differences crossing Non-SPs and SPs in plane search.
arXiv Detail & Related papers (2022-07-01T14:53:27Z) - Searching Collaborative Agents for Multi-plane Localization in 3D
Ultrasound [15.573821037925143]
3D ultrasound can contain multiple standard planes (SPs) in one shot.
Manual SP localization in 3D US is challenging because of the low image quality, huge search space and large anatomical variability.
We propose a novel multi-agent reinforcement learning framework to simultaneously localize multiple SPs in 3D US.
arXiv Detail & Related papers (2021-05-22T02:48:23Z) - Agent with Warm Start and Adaptive Dynamic Termination for Plane
Localization in 3D Ultrasound [14.256624552635786]
This study enhances our previous RL framework with a newly designed adaptive dynamic termination to enable an early stop for the agent searching.
Our approach achieves localization error of 2.52mm/10.26 degrees, 2.48mm/10.39 degrees, 2.02mm/10.48 degrees, 2.00mm/14.57 degrees, 2.61mm/9.71 degrees, 3.09mm/9.58 degrees, 1.49mm/7.54 degrees for the transcerebellar, transventricular, transthalamic planes in fetal brain, abdominal plane in fetal abdomen, and mid-sagittal, transverse and coronal planes in uterus.
arXiv Detail & Related papers (2021-03-26T14:57:26Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z) - Agent with Warm Start and Active Termination for Plane Localization in
3D Ultrasound [56.14006424500334]
Standard plane localization is crucial for ultrasound (US) diagnosis.
In prenatal US, dozens of standard planes are manually acquired with a 2D probe.
We propose a novel reinforcement learning framework to automatically localize fetal brain standard planes in 3D US.
arXiv Detail & Related papers (2019-10-10T02:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.