論文の概要: Learning from Few Samples: A Survey
- arxiv url: http://arxiv.org/abs/2007.15484v1
- Date: Thu, 30 Jul 2020 14:28:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 14:14:58.739395
- Title: Learning from Few Samples: A Survey
- Title(参考訳): いくつかのサンプルから学ぶ:調査
- Authors: Nihar Bendre, Hugo Terashima Mar\'in, and Peyman Najafirad
- Abstract要約: コンピュータビジョン領域における既存の数ショットメタ学習手法について,その手法と評価指標に基づいて検討する。
我々は、これらの技術のための分類法を提供し、それらをデータ拡張、埋め込み、最適化、セマンティクスに基づく学習に分類する。
- 参考スコア(独自算出の注目度): 1.4146420810689422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have been able to outperform humans in some cases like
image recognition and image classification. However, with the emergence of
various novel categories, the ability to continuously widen the learning
capability of such networks from limited samples, still remains a challenge.
Techniques like Meta-Learning and/or few-shot learning showed promising
results, where they can learn or generalize to a novel category/task based on
prior knowledge. In this paper, we perform a study of the existing few-shot
meta-learning techniques in the computer vision domain based on their method
and evaluation metrics. We provide a taxonomy for the techniques and categorize
them as data-augmentation, embedding, optimization and semantics based learning
for few-shot, one-shot and zero-shot settings. We then describe the seminal
work done in each category and discuss their approach towards solving the
predicament of learning from few samples. Lastly we provide a comparison of
these techniques on the commonly used benchmark datasets: Omniglot, and
MiniImagenet, along with a discussion towards the future direction of improving
the performance of these techniques towards the final goal of outperforming
humans.
- Abstract(参考訳): ディープニューラルネットワークは、画像認識や画像分類など、いくつかのケースで人間より優れています。
しかし、様々な新しいカテゴリーが出現し、限られたサンプルからネットワークの学習能力を継続的に拡張する能力は依然として課題である。
メタラーニングや少数ショット学習といったテクニックは、事前の知識に基づいて新しいカテゴリやタスクを学習したり、一般化したりできる、有望な結果を示した。
本稿では,その手法と評価指標に基づいて,コンピュータビジョン領域における既存の数発メタラーニング手法について検討する。
我々は、これらの技術のための分類法を提供し、それらをデータ拡張、埋め込み、最適化、セマンティクスに基づく学習に分類する。
次に,各カテゴリで行った精巧な作業について述べ,少数のサンプルから学ぶことの難しさを解決するためのアプローチについて論じる。
最後に、一般的なベンチマークデータセットであるomniglotとminiimagenetにおけるこれらのテクニックの比較と、これらのテクニックのパフォーマンス向上の今後の方向性に関する議論と、人間を上回る最終目標に向けての議論を提供します。
関連論文リスト
- Budget-aware Few-shot Learning via Graph Convolutional Network [56.41899553037247]
本稿では,いくつかの例から新しい視覚概念を学習することを目的とした,数ショット学習の課題に取り組む。
数ショット分類における一般的な問題設定は、データラベルの取得においてランダムサンプリング戦略を前提としている。
そこで我々は,新しい対象カテゴリーの学習を目的とした,予算に配慮した数発の学習問題を新たに導入する。
論文 参考訳(メタデータ) (2022-01-07T02:46:35Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
少ないショット学習は、ラベル付きデータしか持たない新しいタスクに、以前のタスクから学んだ知識を適応させることを目的としている。
少数ショット学習に関する研究文献は、大きな多様性を示し、異なるアルゴリズムは、しばしば異なる少数ショット学習シナリオで優れている。
本稿では,メタナビゲータ(Meta Navigator)について紹介する。
論文 参考訳(メタデータ) (2021-09-13T07:20:01Z) - Deep Metric Learning for Few-Shot Image Classification: A Selective
Review [38.71276383292809]
少ないショット画像分類は、少数の画像のみに基づいて人間の認識レベルを達成することを目的とした課題である。
近年,メタラーニングやトランスファーラーニング,メトリックラーニングといったディープラーニングアルゴリズムが採用され,最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-05-17T20:27:59Z) - A Survey on Contrastive Self-supervised Learning [0.0]
自己教師付き学習は、大規模なデータセットのアノテートコストを回避する能力によって人気を集めている。
コントラスト学習は近年,コンピュータビジョン,自然言語処理(NLP)などの分野において,自己指導型学習手法の主流となっている。
本稿では, コントラスト的アプローチに従う自己教師型手法について, 広範囲にわたるレビューを行う。
論文 参考訳(メタデータ) (2020-10-31T21:05:04Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Generalized Few-Shot Video Classification with Video Retrieval and
Feature Generation [132.82884193921535]
従来の手法は,映像特徴学習の重要性を過小評価し,二段階的アプローチを提案する。
この単純なベースラインアプローチは、既存のベンチマークで20ポイント以上の精度で、以前の数ショットビデオ分類方法よりも優れていることを示す。
さらなる改善をもたらす2つの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-09T13:05:32Z) - Looking back to lower-level information in few-shot learning [4.873362301533825]
本稿では,隠れたニューラルネットワーク層の特徴埋め込みを低レベル支援情報として活用し,分類精度を向上させることを提案する。
筆者らは,MiniImageNet と tieredImageNet という2つの人気の数点学習データセットを用いた実験を行い,この手法がネットワークの低レベル情報を利用して最先端の分類性能を向上できることを示した。
論文 参考訳(メタデータ) (2020-05-27T20:32:13Z) - Knowledge Guided Metric Learning for Few-Shot Text Classification [22.832467388279873]
我々は,人間の知識を模倣する素早い学習に外部知識を導入することを提案する。
人間の知性に触発され,人間の知識を模倣する素早い学習に外部知識を導入することを提案する。
提案手法は,最新の数ショットのテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-04T10:56:26Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
メタトレーニングセット上で教師付きあるいは自己教師型表現を学習する単純なベースラインが、最先端の数ショット学習方法より優れていることを示す。
追加の増量は自己蒸留によって達成できる。
我々は,この発見が,画像分類ベンチマークとメタ学習アルゴリズムの役割を再考する動機となっていると考えている。
論文 参考訳(メタデータ) (2020-03-25T17:58:42Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
評価基準に基づいて,分類済みモデル全体に対するメタラーニング(メタラーニング)を提案する。
我々は,この単純な手法が標準ベンチマークにおける最先端手法との競合性能を達成するのを観察する。
論文 参考訳(メタデータ) (2020-03-09T20:06:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。