論文の概要: A Survey on Contrastive Self-supervised Learning
- arxiv url: http://arxiv.org/abs/2011.00362v3
- Date: Sun, 7 Feb 2021 19:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 05:04:40.942657
- Title: A Survey on Contrastive Self-supervised Learning
- Title(参考訳): 対照的自己教師付き学習に関する調査研究
- Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya
Banerjee, Fillia Makedon
- Abstract要約: 自己教師付き学習は、大規模なデータセットのアノテートコストを回避する能力によって人気を集めている。
コントラスト学習は近年,コンピュータビジョン,自然言語処理(NLP)などの分野において,自己指導型学習手法の主流となっている。
本稿では, コントラスト的アプローチに従う自己教師型手法について, 広範囲にわたるレビューを行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning has gained popularity because of its ability to
avoid the cost of annotating large-scale datasets. It is capable of adopting
self-defined pseudo labels as supervision and use the learned representations
for several downstream tasks. Specifically, contrastive learning has recently
become a dominant component in self-supervised learning methods for computer
vision, natural language processing (NLP), and other domains. It aims at
embedding augmented versions of the same sample close to each other while
trying to push away embeddings from different samples. This paper provides an
extensive review of self-supervised methods that follow the contrastive
approach. The work explains commonly used pretext tasks in a contrastive
learning setup, followed by different architectures that have been proposed so
far. Next, we have a performance comparison of different methods for multiple
downstream tasks such as image classification, object detection, and action
recognition. Finally, we conclude with the limitations of the current methods
and the need for further techniques and future directions to make substantial
progress.
- Abstract(参考訳): 自己教師付き学習は、大規模なデータセットのアノテートコストを回避する能力によって人気を集めている。
自己定義された擬似ラベルを監督として採用し、学習した表現を下流のタスクに使用することができる。
具体的には、コンピュータビジョン、自然言語処理(NLP)などの分野における自己教師型学習手法において、コントラスト学習が主流となっている。
異なるサンプルから埋め込みを排除しながら、同じサンプルの強化バージョンを互いに近くに埋め込むことを目的としている。
本稿では,コントラスト的アプローチに従う自己教師型手法の広範なレビューを行う。
この研究は、対照的な学習セットアップで一般的に使われるプリテキストタスクを説明し、これまでに提案されている異なるアーキテクチャについて説明している。
次に,画像分類,物体検出,行動認識など,複数の下流タスクに対する異なる手法の性能比較を行う。
最後に,現在の手法の限界と,さらなる技術と今後の方向性の必要性を結論づける。
関連論文リスト
- A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - On minimal variations for unsupervised representation learning [19.055611167696238]
教師なし表現学習は、様々な下流タスクを解決するために、生データを効率的に記述することを目的としている。
教師なし表現学習の原則として最小限のバリエーションを考案することは、自己教師付き学習アルゴリズムの実践的ガイドラインを改善する道を開く。
論文 参考訳(メタデータ) (2022-11-07T18:57:20Z) - CoDo: Contrastive Learning with Downstream Background Invariance for
Detection [10.608660802917214]
下流背景不変性(CoDo)を用いたコントラスト学習という,オブジェクトレベルの自己教師型学習手法を提案する。
プリテキストタスクは、さまざまなバックグラウンド、特に下流データセットのインスタンス位置モデリングに集中するように変換される。
MSCOCOの実験では、共通のバックボーンを持つCoDoであるResNet50-FPNが、オブジェクト検出に強力な転送学習結果をもたらすことを示した。
論文 参考訳(メタデータ) (2022-05-10T01:26:15Z) - Contrastive Continual Learning with Feature Propagation [32.70482982044965]
連続した機械学習者は、異なるタスク間でドメインやクラスシフトを伴うタスクのストリームを寛大に学習する。
本稿では,複数の連続学習シナリオを処理可能な特徴伝達に基づくコントラスト型連続学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-03T04:55:28Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
近年の自己教師型学習のブレークスルーは、このようなアルゴリズムが視覚的な表現を学習し、見えないタスクにもっとうまく移行できることを示している。
本稿では、連続的な学習と伝達可能な表現の維持に焦点を当てたリハーサルに基づく連続学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-28T06:14:38Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
対照的な自己教師型学習は、セグメンテーションやオブジェクト検出といった多くの下流タスクにおいて教師付き事前訓練よりも優れています。
本稿では,データセットのバイアスが既存手法にどのように影響するかを最初に検討する。
現在のコントラストアプローチは、(i)オブジェクト中心対シーン中心、(ii)一様対ロングテール、(iii)一般対ドメイン固有データセットなど、驚くほどうまく機能することを示す。
論文 参考訳(メタデータ) (2021-06-10T17:59:13Z) - Can Semantic Labels Assist Self-Supervised Visual Representation
Learning? [194.1681088693248]
近隣環境におけるコントラスト調整(SCAN)という新しいアルゴリズムを提案する。
一連のダウンストリームタスクにおいて、SCANは従来の完全教師付きおよび自己教師付きメソッドよりも優れたパフォーマンスを達成する。
本研究は, セマンティックラベルが自己指導的手法の補助に有用であることを明らかにする。
論文 参考訳(メタデータ) (2020-11-17T13:25:00Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。