論文の概要: Dense Scene Multiple Object Tracking with Box-Plane Matching
- arxiv url: http://arxiv.org/abs/2007.15576v2
- Date: Thu, 1 Apr 2021 14:09:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 14:24:56.461497
- Title: Dense Scene Multiple Object Tracking with Box-Plane Matching
- Title(参考訳): 箱面マッチングを用いた高密度シーン多重物体追跡
- Authors: Jinlong Peng, Yueyang Gu, Yabiao Wang, Chengjie Wang, Jilin Li, Feiyue
Huang
- Abstract要約: マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
密集したシーンにおけるMOT性能を改善するために,Box-Plane Matching (BPM)法を提案する。
3つのモジュールの有効性により、ACM MM Grand Challenge HiEve 2020において、私たちのチームはトラック1のリーダーボードで1位を獲得しました。
- 参考スコア(独自算出の注目度): 73.54369833671772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple Object Tracking (MOT) is an important task in computer vision. MOT
is still challenging due to the occlusion problem, especially in dense scenes.
Following the tracking-by-detection framework, we propose the Box-Plane
Matching (BPM) method to improve the MOT performacne in dense scenes. First, we
design the Layer-wise Aggregation Discriminative Model (LADM) to filter the
noisy detections. Then, to associate remaining detections correctly, we
introduce the Global Attention Feature Model (GAFM) to extract appearance
feature and use it to calculate the appearance similarity between history
tracklets and current detections. Finally, we propose the Box-Plane Matching
strategy to achieve data association according to the motion similarity and
appearance similarity between tracklets and detections. With the effectiveness
of the three modules, our team achieves the 1st place on the Track-1
leaderboard in the ACM MM Grand Challenge HiEve 2020.
- Abstract(参考訳): マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
MOTは、特に密集したシーンにおいて、閉塞問題のため、依然として難しい。
追跡検出フレームワークに従い,密集したシーンにおけるmotパフォーマンスを改善するために,bpm(box-plane matching)法を提案する。
まず, 雑音検出をフィルタするために, 層別アグリゲーション識別モデル (ladm) を設計する。
そして,残りの検出を正確に関連付けるために,Global Attention Feature Model(GAFM)を導入し,その特徴を抽出し,履歴トラッカーと現在の検出との外観類似性を計算する。
最後に,トラックレットと検出装置の動作類似度と外観類似度に応じてデータアソシエーションを実現するためのBox-Plane Matching戦略を提案する。
3つのモジュールの有効性により、チームはacm mm grand challenge hieve 2020でトラック1のリーダーボードで1位を獲得した。
関連論文リスト
- ADA-Track: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
多視点カメラによる3D MOTのための新しいエンドツーエンドフレームワークであるADA-Trackを紹介する。
エッジ拡張型クロスアテンションに基づく学習可能なデータアソシエーションモジュールを提案する。
我々は、この関連モジュールをDTRベースの3D検出器のデコーダ層に統合する。
論文 参考訳(メタデータ) (2024-05-14T19:02:33Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
マルチオブジェクトトラッキング(MOT)は、ビデオフレーム間のオブジェクトのバウンディングボックスとIDを推定することを目的としている。
低スコア検出ボックス内の真のオブジェクトをマイニングするための階層型データアソシエーション戦略を提案する。
3次元のシナリオでは、トラッカーが世界座標の物体速度を予測するのがずっと簡単である。
論文 参考訳(メタデータ) (2023-03-27T15:35:21Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object Track (MOT) は、連続的な動的検出時の一貫性を保証する。
LiDAR法で物体の不規則な動きを正確に追跡することは困難である。
複合外観運動最適化(CAMO-MOT)に基づく新しいカメラ-LiDAR融合3DMOTフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-06T14:41:38Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3Dマルチオブジェクトトラッキング(MOT)は、自動運転車にとって重要な問題である。
提案手法であるInterTrackは,データアソシエーションのための識別対象表現を生成する。
我々はnuScenes 3D MOTベンチマークのアプローチを検証する。
論文 参考訳(メタデータ) (2022-08-17T03:24:36Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
MMPAT(MultiModality PAnoramic Multi-object Tracking framework)を提案する。
2次元パノラマ画像と3次元点雲を入力とし、マルチモーダルデータを用いて目標軌道を推定する。
提案手法は,検出タスクと追跡タスクの両方においてMMPATが最高性能を達成するJRDBデータセット上で評価する。
論文 参考訳(メタデータ) (2021-05-31T03:16:38Z) - A two-stage data association approach for 3D Multi-object Tracking [0.0]
画像に基づくトラッキングを3D環境に適応させる2段階データアソシエーション手法を開発した。
提案手法は,NuScenes 検証セットにおいて0.587 AMOTA を達成し,データアソシエーションのための一段二部マッチングを用いてベースラインより優れる。
論文 参考訳(メタデータ) (2021-01-21T15:50:17Z) - IA-MOT: Instance-Aware Multi-Object Tracking with Motion Consistency [40.354708148590696]
IA-MOT(Instance-Aware MOT)は、静止カメラまたは移動カメラで複数の物体を追跡できる。
提案手法は,CVPR 2020ワークショップにおけるBMTTチャレンジのトラック3で優勝した。
論文 参考訳(メタデータ) (2020-06-24T03:53:36Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。