論文の概要: IMM-MOT: A Novel 3D Multi-object Tracking Framework with Interacting Multiple Model Filter
- arxiv url: http://arxiv.org/abs/2502.09672v1
- Date: Thu, 13 Feb 2025 01:55:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:44:34.446198
- Title: IMM-MOT: A Novel 3D Multi-object Tracking Framework with Interacting Multiple Model Filter
- Title(参考訳): IMM-MOT:複数モデルフィルタを連動させた新しい3次元多対象追跡フレームワーク
- Authors: Xiaohong Liu, Xulong Zhao, Gang Liu, Zili Wu, Tao Wang, Lei Meng, Yuhan Wang,
- Abstract要約: 3D Multi-Object Tracking (MOT) は周囲の物体の軌跡を提供する。
トラッキング・バイ・ディテククションフレームワークに基づく既存の3D MOTメソッドは、通常、オブジェクトを追跡するために単一のモーションモデルを使用する。
IMM-MOTにおける干渉多重モデルフィルタを導入し、個々の物体の複雑な動きパターンを正確にマッチングする。
- 参考スコア(独自算出の注目度): 10.669576499007139
- License:
- Abstract: 3D Multi-Object Tracking (MOT) provides the trajectories of surrounding objects, assisting robots or vehicles in smarter path planning and obstacle avoidance. Existing 3D MOT methods based on the Tracking-by-Detection framework typically use a single motion model to track an object throughout its entire tracking process. However, objects may change their motion patterns due to variations in the surrounding environment. In this paper, we introduce the Interacting Multiple Model filter in IMM-MOT, which accurately fits the complex motion patterns of individual objects, overcoming the limitation of single-model tracking in existing approaches. In addition, we incorporate a Damping Window mechanism into the trajectory lifecycle management, leveraging the continuous association status of trajectories to control their creation and termination, reducing the occurrence of overlooked low-confidence true targets. Furthermore, we propose the Distance-Based Score Enhancement module, which enhances the differentiation between false positives and true positives by adjusting detection scores, thereby improving the effectiveness of the Score Filter. On the NuScenes Val dataset, IMM-MOT outperforms most other single-modal models using 3D point clouds, achieving an AMOTA of 73.8%. Our project is available at https://github.com/Ap01lo/IMM-MOT.
- Abstract(参考訳): 3D Multi-Object Tracking (MOT)は、周囲の物体の軌跡を提供し、よりスマートな経路計画と障害物回避を支援する。
トラッキング・バイ・ディテククションフレームワークに基づく既存の3D MOTメソッドは、通常、トラッキングプロセス全体を通してオブジェクトを追跡するために単一のモーションモデルを使用する。
しかし、周囲の環境の変化により、物体は動きのパターンを変える可能性がある。
本稿では、既存手法における単一モデル追跡の限界を克服し、個々のオブジェクトの複雑な動きパターンに正確に適合する、IMM-MOTにおけるインターアクタリング多重モデルフィルタを提案する。
さらに、軌道のライフサイクル管理にダンピングウィンドウ機構を導入し、軌道の連帯状態を利用してそれらの生成と終了を制御し、見落としている低信頼の真の目標の発生を減らす。
さらに,検出スコアを調整することにより,偽陽性と真陽性の区別を向上し,スコアフィルタの有効性を向上させるディスタンスベーススコア拡張モジュールを提案する。
NuScenes Valデータセットでは、IMM-MOTは3Dポイントクラウドを使用して他のほとんどの単一モードモデルより優れており、AMOTAは73.8%である。
私たちのプロジェクトはhttps://github.com/Ap01lo/IMM-MOT.comで利用可能です。
関連論文リスト
- Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
異なる時間軸に沿った物体の運動キューが3次元多物体追跡において重要であることが判明した。
3つの動き認識コンポーネントからなるフレームワークであるMoMA-M3Tを提案する。
我々はnuScenesとKITTIデータセットに関する広範な実験を行い、MoMA-M3Tが最先端の手法と競合する性能を発揮することを実証した。
論文 参考訳(メタデータ) (2023-08-22T17:53:58Z) - MotionTrack: End-to-End Transformer-based Multi-Object Tracing with
LiDAR-Camera Fusion [13.125168307241765]
複数のクラスでオブジェクトを追跡するための多モードセンサ入力を用いたエンドツーエンドトランスフォーマーベースMOTアルゴリズム(MotionTrack)を提案する。
MotionTrackとそのバリエーションは、他の古典的なベースラインモデルと比較して、nuScenesデータセット上のより良い結果(AMOTAスコア0.55)を達成する。
論文 参考訳(メタデータ) (2023-06-29T15:00:12Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3Dマルチオブジェクトトラッキング(MOT)は、自律走行車やサービスロボットを含む多くのアプリケーションにとって不可欠である。
本稿では,新しいポイントクラウドベースの3DMOTフレームワークであるTrjectoryFormerを紹介する。
論文 参考訳(メタデータ) (2023-06-09T13:31:50Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
提案手法は,2次元検出器と3次元検出器のみを用いて,ロバストなトラッキングを実現する。
多くの最先端のTBDベースのマルチモーダルトラッキング手法よりも正確であることが証明されている。
論文 参考訳(メタデータ) (2023-04-18T02:45:18Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object Track (MOT) は、連続的な動的検出時の一貫性を保証する。
LiDAR法で物体の不規則な動きを正確に追跡することは困難である。
複合外観運動最適化(CAMO-MOT)に基づく新しいカメラ-LiDAR融合3DMOTフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-06T14:41:38Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3Dマルチオブジェクトトラッキング(MOT)は、自動運転車にとって重要な問題である。
提案手法であるInterTrackは,データアソシエーションのための識別対象表現を生成する。
我々はnuScenes 3D MOTベンチマークのアプローチを検証する。
論文 参考訳(メタデータ) (2022-08-17T03:24:36Z) - Exploring Simple 3D Multi-Object Tracking for Autonomous Driving [10.921208239968827]
LiDARポイントクラウドにおける3Dマルチオブジェクトトラッキングは、自動運転車にとって重要な要素である。
既存の手法は、主にトラッキング・バイ・検出パイプラインに基づいており、検出アソシエーションのマッチングステップが必然的に必要である。
我々は,手作りの追跡パラダイムをシンプルにするために,原点雲からの共同検出と追跡のためのエンドツーエンドのトレーニング可能なモデルを提案する。
論文 参考訳(メタデータ) (2021-08-23T17:59:22Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
MMPAT(MultiModality PAnoramic Multi-object Tracking framework)を提案する。
2次元パノラマ画像と3次元点雲を入力とし、マルチモーダルデータを用いて目標軌道を推定する。
提案手法は,検出タスクと追跡タスクの両方においてMMPATが最高性能を達成するJRDBデータセット上で評価する。
論文 参考訳(メタデータ) (2021-05-31T03:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。